
Java Stored Procedures - Q & A

Josip Pojatina
mStart d.o.o. (Agrokor ICT)
josip.pojatina@mStart.hr

mStart d.o.o.

�Introduction

�JVM version in Oracle Db

�How to debug Java stored procedures

�Where to implement Java st. proc.

�Cases for Java Stored Procedures

Table of contents

�Cases for Java Stored Procedures

�Performance tests

�Demo

�Q & A

mStart d.o.o.

�Agrokor ICT 1.7.2010. changed the name into mStart d.o.o.

�Operates as an independent company within the Agrokor Group

�Main goal is to provide support for 200+ clients

About mStart

mStart d.o.o.

�Architecture/design/optimization/development/administration

�15+ years with Oracle RDBMS

�10+ years of experience with optimization of the large sites based

on the Oracle technology (Oracle Db, Web Logic, Oracle Service Bus

(OSB), Java/JRockit JVM)

About the author

(OSB), Java/JRockit JVM)

�Red Hat / Oracle Linux, IBM AIX

�speciality - Oracle CBO, PL/SQL i Java store procedures

�Oracle Retail

�Oracle eBS

mStart d.o.o.

•What will be covered in this presentation:

–How to load Java stored procedures in Oracle db

–Where to put Java stored procedures in db

–How to debug Java stored procedures

–How to profile Java stored procedures

Introduction

–How to profile Java stored procedures

–When to use Java stored procedures

mStart d.o.o.

•Introduced with Oracle 8i rdbms back in 1999

•Java in Db is running on top heavily customized JVM

•Lag between current standard Java version (Java 8) and Db version

(Java 6 in 12c, possible upgrade to Java 7, Java 5 in 11.2.0.3,

possible upgrade to Java 6 in 11.2.0.4)

Introduction

possible upgrade to Java 6 in 11.2.0.4)

•Tightly integrated with Oracle rdbms

•Specific architecture as consequence of tight integration

•Requires knowledge of Oracle (DBA) and Java

•Not widely used as should be due to the required skills

mStart d.o.o.

•Code is running on all platforms where Oracle Db is running

•Very robust and scalable

•Sessined based architecture

•Harder to debug than java outside the Db (besides Java knowledge,

require DBA skills)

Introduction

require DBA skills)

•Java code intergrated with PL/SQL and SQL

•Lack of threading support (nonpreemptive scheduler)

•GUI materialization not possible

•JVM is running in SGA

mStart d.o.o.

•Despite session model, only statics and private states are in

session space (everything else is shared)

•Robustness as result that each session has it's own JVM

•Security model in accordance with Oracle Db security

•JVM upgrade possible only as part of Db upgrade

Introduction

•JVM upgrade possible only as part of Db upgrade

•Three method of execution Java code

–interpreted

–JIT (from 11.1g)

–native

mStart d.o.o.

•Many ways to load Java in Db

–DDL (create java, alter java)

–loadjava utility

–JDeveloper (uses loadjava behind the scene)

–dbms_java.load_java

Introduction

–dbms_java.load_java

•Three ways to invoke Java in the Db

–PL/SQL wrapper approach (most common, problem with call

specs)

–OJVMJAVA command line utility

–Client-side approach (JPublisher)

mStart d.o.o.

•What Version of Java is Compatible With The Database JVM� (Doc

ID 438294.1)

–DB Version 9.2 - Java 1.3.1

–DB Version 10.2 - Java 1.4.2

–DB Version 11.1 - Java 1.5.0

JVM version in Oracle Db

–DB Version 11.1 - Java 1.5.0

–DB Version 11.2 - Java 1.5.0 (1.6 from PS 11.2.0.4)

–DB Version 12.1 - Java 1.6 or 1.7 (Whichever version is enabled)

•How To Determine The JDK Version Used by the Oracle JVM in the

Database (Doc ID 131872.1)

mStart d.o.o.

JVM version in Oracle Db

mStart d.o.o.

•With classic way of debugging in Oracle we won't have success as

Oracle debugger cannot see inside the JVM (JVM is black box for

Oracle debugger).

•That can be seen in the following examples:

–dbms_debug

Debug - how to

–dbms_debug

–hierarchical profiler

–10046 trace event

mStart d.o.o.

Debug - dbms_profiler

mStart d.o.o.

•1 __anonymous_block

•2 __plsql_vm

•3 SCOTT TESTSPEED9 PROCEDURE TESTSPEED9

•4 sys dbms_hprof package body start_profiling

•5 SYS DBMS_HPROF PACKAGE BODY

Debug - hprofiler

•5 SYS DBMS_HPROF PACKAGE BODY

STOP_PROFILING

mStart d.o.o.

•Elapsed times include waiting on following events:

• Event waited on Times Max. Wait Total Waited

• -- Waited ---------- ------------

• SQL*Net message to client 2 0.00 0.00

• SQL*Net message from client 2 6.15 11.94

Debug - 10046 trace file

• SQL*Net message from client 2 6.15 11.94

• row cache lock 4 0.00 0.00

• DFS lock handle 2 0.00 0.00

• OJVM: Generic 10 1.00 9.99

mStart d.o.o.

•From Oracle neutral Java IDE (like Netbeans, Eclipse, JetBrains ...)

–plus:

•easy to setup (just add the code fragment from the next

slide inside Java Stored Procedure)

–minus:

Debug - two approaches

–minus:

•exceptions in Java Stored Procedures are not properly

returned.

•Creating table for java error table as workaround

mStart d.o.o.

Debug - two approaches

mStart d.o.o.

•From Oracle JDeveloper

–plus:

•Provides the same feeling as debug client side Java apps

(all info provided including Oracle types, collections...)

–minus:

Debug - two approaches

–minus:

•Not easy to setup

•Close work with DBA required

mStart d.o.o.

•As a Java method with PL/SQL wrapper

–the most common approach

–Java methods callable from SQL, PL/SQL

procedures/functions/package/trigger

Where to implement Java st. proc.

•As a user object type

–member functions

mStart d.o.o.

Where to implement Java st. proc.

mStart d.o.o.

Where to implement Java st. proc.

mStart d.o.o.

•Calling EJB from Oracle JVM

–cooperation between the database and the middle tier to

provide business service

•HTTP Call-out

Cases for Java Stored Procedures

•HTTP Call-out

–Java apps running inside the Db can invoke Web components

such as JSP/Servlets etc. running in the Middle Tier by using

HTTP/HTTPS

–notifications

mStart d.o.o.

•JMS in the Database

–JMS can run against different messaging systems

–unlike Oracle AQ/Streams, widely used as a standard way to

excehange messages against different systems

–uses AQ infrastructure in the Db

Cases for Java Stored Procedures

–uses AQ infrastructure in the Db

•Calling Non-Oracle Db through the JDBC

–by importing appropriate jdbc driver for target DB

–simpler solution and faster solution then Heterogenous

Services

mStart d.o.o.

•RMI (Remote Method Invocation)

–accessing external proprietary systems

–acomplish different actions on the remote server

•Calculations/sorting/number crunching

Cases for Java Stored Procedures

–Native, ahead of time compiled Java

•Non Java Languages in the Db

–JVM runnable languages like Python, Groovy etc.

mStart d.o.o.

•Non Java Languages in the Db

–JVM runnable languages like Python, Groovy etc.

•XML processing

–especially interesting from 11g+ Db version due to the new

Cases for Java Stored Procedures

–especially interesting from 11g+ Db version due to the new

data types and the new engine for XML

mStart d.o.o.

•Extending existing functionalities

–utl_file

–dbms_mail

•Getting enterprise features on Standard edition of Oracle Db

Cases for Java Stored Procedures

•Getting enterprise features on Standard edition of Oracle Db

–data encryption

–network encription

–replication

–huge savings in licenses, but need to maintance added

functionalities

mStart d.o.o.

•Test Java code:

•public class TestSpeed {

• public static void main(String args[]){

• float x;

• for(int i = 1; i <= 10000000; i++){

Performance tests

• for(int i = 1; i <= 10000000; i++){

• x = i / 1000;

• }

• }

•}

mStart d.o.o.

•Java stored procedure: interpreted

•JPOJATINA@test> exec testspeed2;

•PL/SQL procedure successfully completed.

•Elapsed: 00:00:01.87

Performance tests - CPU intensive

•Elapsed: 00:00:01.87

•Nakon JIT-a:

•Elapsed: 00:00:00.04

mStart d.o.o.

•Java stored procedure: native compile (ahead of time compilation)

•JPOJATINA@test> exec testspeed2;

•PL/SQL procedure successfully completed.

•Elapsed: 00:00:00.03

Performance tests - CPU intensive

•Elapsed: 00:00:00.03

mStart d.o.o.

•C code compiled on IBM AIX (XLC Compiler)

•#include <stdio.h>

•void main(void)

•{

•double x;

Performance tests - CPU intensive

•double x;

•for (int i = 1; i <= 10000000; i++)

•{

•x = i / 1000;

•} }

mStart d.o.o.

•C code compiled on IBM AIX (XLC Compiler)

•oracle@xxx-xxx-xx-1p:/tmp > time speedtest

•real 0m0.076s

•user 0m0.043s

Performance tests - CPU intensive

•user 0m0.043s

•sys 0m0.001s

mStart d.o.o.

•PL/SQL code

•CREATE OR REPLACE PROCEDURE test_speed AS

•v_number NUMBER;

•begin

Performance tests - CPU intensive

•begin

•FOR i IN 1 .. 10000000 LOOP

•v_number := i / 1000;

•end loop;

•end;

mStart d.o.o.

•PL/SQL code - interpreted

•exec test_speed;

•1.768 sec

Performance tests - CPU intensive

•PL/SQL code - native level 3

•exec test_speed;

•elapsed: 00:00:01.73

mStart d.o.o.

•create or replace procedure test_speed8 as

•v_number simple_double :=0;

•x simple_double := 1000;

•y simple_double := 0;

•begin

Performance tests - CPU intensive

•begin

•for i in 1 .. 10000000 loop

•y := i;

•v_number := y / x;

•end loop;

•end;

mStart d.o.o.

•PL/SQL code optimized - interpreted

•exec test_speed8;

•PL/SQL procedure successfully completed.

•elapsed: 00:00:00.65 - Elapsed: 00:00:00.81

Performance tests - CPU intensive

•elapsed: 00:00:00.65 - Elapsed: 00:00:00.81

•

•PL/SQL code optimized - native compile

•Elapsed: 00:00:00.88

mStart d.o.o.

•Java - client side code

•time java TestSpeed

•real 0m0.102s

Performance tests - CPU intensive

•real 0m0.102s

•user 0m0.090s

•sys 0m0.019s

mStart d.o.o.

Performance tests - Data intensive

mStart d.o.o.

•Java - client side code

–====> Duration: 296 Milliseconds

•Java server side - interpreted

–====> Duration: 77 Milliseconds (Average on 3 tests)

•Java server side - native

Performance tests - Data intensive

•Java server side - native

–====> Duration: 98 Milliseconds

•PL/SQL

–====> Duration: 40 Milliseconds

mStart d.o.o.

Demo

mStart d.o.o.

Optimizacija SQL-a na Oracle Support
način

mStart d.o.o.

