
www.hujak.hr 1

Above and Beyond
Java 9, 10, 11, 12…

dr. sc. Branko Mihaljević

and

dr. sc. Martin Žagar

HUJAK

A bit of Sentimental Journey

• HUJAK founded in 2011

• Interested in meetups
• Well, more drinkups☺

• No one dreamed about
organizing conferences ☺

• However, we've got some
help… ☺

• … the beginning
of a beautiful friendship …

www.hujak.hr 3

JavaCro conferences – 2012-2018

4

Javantura conferences – 2014-2018

www.hujak.hr 5

Java-related Conferences in Croatia

www.hujak.hr 6

Conference Location Date Sessions Tracks Attendees Countries

JavaCro'18 Rovinj 7.-9.5.2018. 47 5 300 15

Javantura v5 Zagreb 17.2.2018. 26 3 300 -

JavaCro'17 Rovinj 10.-12.5.2017. 50 5 280 15

Javantura v4 Zagreb 11.2.2017. 27 3 300 -

HrOUG 2016 Rovinj 18.-22.10.2016. 7 (od 96) 1 (od 9) 450 11

JavaCro'16 Rovinj 18.-20.5.2016. 56 5 260 15

Javantura v3 Zagreb 20.2.2016. 23 - 300 -

JavaCro'15 Rovinj 10.-12.5.2015. 46 5 200 11

Javantura v2 Zagreb 15.11.2014. 16 - 160 -

JavaCro'14 Poreč 11.-13.5.2014. 50 5 220 11

Javantura v1 Zagreb 22.2.2014. 12 - 150 -

WebCamp 2013 Zagreb 26.10.2013. 24 - 600 -

HrOUG 2013 Rovinj 15.-19.10.2013. 11 (od 90) 1 (od 7) 370 12

JavaCro'13 Tuhelj 3.-5.6.2013. 50 5 200 -

HrOUG 2012 Rovinj 16.-20.10.2012. 11 (od 114) 1 (od 7) 370 13

WebCamp 2012 Zagreb 24.11.2012. 24 - -

Java 2012 Tuhelj 29.-30.5.2012. 34 7 170 -

HrOUG 2011 Rovinj 18.-22.10.2011. 12 (od 96) 1 (od 9) 460 11

This is our 19th conference!!! ☺
#Javantura #JavaCro #HrOUG #proud

170
200

150

220

160

220

280
260

300
280

300 300

34
50

12

50

16

46

23

56

27

50

26

47

0

20

40

60

80

100

120

140

0

50

100

150

200

250

300

350

Se
ss

io
n

s

A
tt

e
n

d
e

e
s

And we are still there☺

www.hujak.hr 7

JavaCro and Javantura
conferences in numbers

OK, but let's talk about Java! ☺

• Before we start – some interesting facts:

• Java does not stand for Just Another Vague Acronym ☺

• Invented almost by accident
• They were building a new language for set-top box as a "cleaned up" C++ version

• Originally designed for interactive TV and remote handheld devices
• Unfortunately, it was ahead of time

• Called Oak at the beginning
• Later changed to Java because of copyright issues

• Java was named after a coffee cup slang word
• Coffee imported from Indonesian island of Java (Jawa)

www.hujak.hr 8

Some other interesting facts ☺

• 0xCAFEBABE in class files is a tribute to the café
• Where the Green team from Project Stealth went for coffee every day

• James Gosling, "the Father of Java", joined Amazon Web Services (AWS)
team in 2017
• After Sun Microsystems, Google (short), and Liquid Robotics

• Joe Palrang, the guy who created the Duke, also worked later on famous
cartoon movies
• The Simpsons, Shrek, Antz, Flushed Away, and Over the Hedge movies

• JavaScript got its name after Java
• But only as a "marketing scam" just to make it more popular

www.hujak.hr 9

• #1 Development Platform
• Cloud, Microservices, and IoT

• Continued growth of Java for 23 years

• A few Billion Devices run Java

• 10 Million Java Developers in the world
• Many have Java Certificates

• OCA, OCP & OCM for Java SE
• OCE & OCM for Java EE

• 90% of the Fortune 500 companies use Java

• But not only Java – 50+ JVM languages
• including Clojure, Groovy, Scala, JRuby, Jython, Fantom, Kotlin, Ceylon, Xtend, X10, LuaJ,

Golo, Frege, Mirah, Eta… and JavaScript

So, what is… Java?

www.hujak.hr 10

Some Terminology

• Java Platform, Standard Edition (Java SE)
• Specification of Java language, JVM, and core libraries

• Java Development Kit (JDK)
• Tested (binary) implementation of Java SE

• OpenJDK
• Open source reference implementation of Java SE

• OpenJDK binary
• JDK built from OpenJDK source code

www.hujak.hr 11

Current State of Java

• Are you still using Java 8?

• Or you switched to Java 9 / 10?

• Or the latest Java 11?

• What about Java EE?

• Well… let's explain

Java Platform today is:

Stable Secure Free ?
However, commonly choose two out of three

www.hujak.hr 12

"Moving Java Forward Faster"

• "For Java to remain competitive it must not just continue to move forward
— it must move forward faster." Mark Reinhold

www.hujak.hr 14

20191995 1998 2001 2004 2007 2010 20222016

2
0

1
8

-0
3

-2
0

2
0

1
7

-0
9

-2
1

2
0

1
4

-0
3

-1
8

Java EE 7

2
0

1
3

-0
6

-1
2

HUJAK

2
0

1
1

-1
2

-1
3

2
0

1
1

-0
7

-2
8

Java EE 6

2
0

0
9

-1
2

-1
0

Java SE 6

Mustang

2
0

0
6

-1
2

-1
1

Java EE 5

2
0

0
6

-0
5

-1
1

Java 5
J2SE 5.0

Tiger

2
0

0
4

-1
0

-0
4

J2EE 1.4

2
0

0
3

-1
1

-1
1

Java 1.4
J2SE 1.4
Merlin

2
0

0
2

-0
2

-0
6

J2EE 1.3

2
0

0
1

-0
9

-2
4

Java 1.3
J2SE 1.3
Kestrel

2
0

0
0

-0
5

-0
8

J2EE 1.2

1
9

9
9

-1
2

-1
2

Java 1.2
J2SE 1.2

Playground

1
9

9
8

-1
2

-0
8

JPE
Java

Professional
Edition

1
9

9
8

-0
5

Java 1.1
JDK 1.1

1
9

9
7

-0
2

-1
9

Java 1
JDK 1.0

Oak

Java
JDK

Alpha-
Beta

1
9

9
5

© 2018, HUJAK

2
0

1
0

-0
1

-2
7

Java SE 7

Dolphin

Java SE 8

Spider

Java EE 8

2
0

1
7

-0
9

-2
1

2013

1
9

9
6

-0
1

-2
3

2
0

1
8

-0
9

-2
5

2
0

1
9

-0
3

2
0

1
9

-0
9

2
0

2
0

-0
3

2
0

2
0

-0
9

2
0

2
1

-0
3

2
0

2
1

-0
9

Jakarta EE
Eclipse

Foundation

OpenJDK (New) Release Model

• New Features included (only) when ready
• Not targeted for specific release, but released when feature complete

• Feature release versions released twice a year
• Every six months in March and September (from JDK 9)

• Update releases will ship quarterly
• in January, April, July, and October

• Long-term support (LTS) feature release every three years
• Starting in September of 2018 with JDK 11
• Updates will be available for at least three years and quite possibly longer

• Time-Based Release Versioning (JEP 322) openjdk.java.net/jeps/322
• Revise the version-string scheme of the Java SE Platform and the JDK
• Plans to name it by year and month (JEP 223), i.e. Java 18.3. – abandoned

www.hujak.hr 15

http://openjdk.java.net/jeps/322

JDK Version Numbering

• $FEATURE.$INTERIM.$UPDATE.$EMERG
• $FEATURE is incremented every six months

• Previously MAJOR

• JDK 10 in March 2018, JDK 11 in September 2018, JDK 12 in March 2019…

• $INTERIM is always zero, reserved for flexibility and future use
• Previously MINOR

• $UPDATE is incremented one month after $FEATURE is incremented, and every three
months thereafter
• Previously SECURITY

• JDK 10.0.1 in April 2018, JDK 10.0.2 in July 2018, JDK 11.0.1 in October 2018…

• $PATCH is emergency patch-release counter
• Outside of planned schedule, incremented only when it's necessary to fix a critical issue

www.hujak.hr 16

Available JDKs (and Licenses)

• Oracle JDK www.oracle.com/technetwork/java/javase/downloads/ $$$?
• Oracle Binary Code License (BCL) with FoU (Field of Use) restrictions

• Many OpenJDKs:

• Oracle OpenJDK jdk.java.net/11/
• GNU General Public License version 2, with the Classpath Exception (GPLv2cpe) with no restrictions
• Security and bug fix updates every (and only for) six months (until next JDK, no overlap)

• Azul's Zulu OpenJDK www.azul.com/downloads/zulu/
• Free, from JDK 6 to JDK 11, wide platform support

• AdoptOpenJDK's OpenJDK adoptopenjdk.net
• Free, from JDK 8 to JDK 11, without commercial support, wide platform support

• AdoptOpenJDK's OpenJDK based on OpenJ9 adoptopenjdk.net
• OpenJ9 is former IBM commercial JVM, now open-sourced to Eclipse foundation

• RedHat's OpenJDK

• SAP's SapMachine OpenJDK

• Other Linux distribution's OpenJDKswww.hujak.hr 17

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://jdk.java.net/11/
http://www.azul.com/downloads/zulu/
https://adoptopenjdk.net/
https://adoptopenjdk.net/

Demystifying "Free" Java

• $free as in free beer (cost) vs
free as in free speech (what can you do)

• For $free use OpenJDK binaries

• For free use OpenJDK with GPLv2+CE license

• Updates refers to code patches – typically $free

• Support means fixing bugs and answering questions – was never $free

www.hujak.hr 18

Oracle's JDK is (not) "free"

• LTS release every 3 years – does not mean 3 years of free updates

• Oracle JDK 11 (and onward) can only be used in production with
commercial Java SE subscription
• Free JDK 11 (and later) are OpenJDK binaries

• Oracle JDK 8 can be used indefinitely for free
• Without any further security patches and bug fixes

• Oracle will lead and contribute to each new JDK (every 6 months)
• For all JDK (Feature and LTE releases)

• Will not backport updates, Java community need to do it for LTS release

www.hujak.hr 19

Open Sourcing and Converged Binaries

• Goal: No functional difference between OpenJDK and Oracle JDK in JDK 11

• Open sourcing closed-source parts of JDK
• Flight recorder

• Mission control

• …

• Removing some closed-source parts
• Browser Plugin

• Java Web Start

• JavaFX

• Backwards Compatibility – applications depending on Java SE should work

www.hujak.hr 20

Converged Binaries

Up to JDK 10

Oracle JDK

OpenJDK

Java SE

JDK 11 and later

OpenJDK &
Oracle JDK

Java SE

www.hujak.hr 21

• What/where to download
Java today?
• OpenJDK

• Oracle JDK

• Some other OpenJDK?
• Zulu (Azul Systems)

or AdoptOpenJDK

• Currently available downloads
of Oracle's JDK:
• Java SE 11.0.1

• Java SE 8u191

www.hujak.hr 22

Java Download

What about www.java.com?

• Well…
we don't know?!?

www.hujak.hr 23

(Long Term) Support

• Long Term Support (LTS) for all releases is not practical

• One Long Term Support release every three years
• Starting with JDK 11 (September 2018), then JDK 17 (September 2021), then JDK 23…

• For Oracle's commercial customers updates available for at least three years or longer

• JDK 9 – supported until March 2018 (release of JDK 10)

• JDK 10 – supported until September 2018 (release of JDK 11)

• JDK 11 (September 2018) – supported until March 2019 (JDK 12)

• JDK 12 (March 2019) …

• JDK change every six months?

www.hujak.hr 24

Public Updates and Support – from 7 till 17

Java SE

Version
Public Release Versions Oracle Support

Commercial / Personal User

End of Public Updates

Oracle's Premier /

Extended Support

7 July 2011 Long Term Support (LTS) - July 2019 / July 2022

8 March 2014 8u191 – October 2018 Long Term Support (LTS) January 2019 / December 2020 March 2022 / March 2025

9 September 2017 9.0.4+11 – January 2018 Short Term Support March 2018 March 2018 / NA

10 March 2018

10.0.0

10.0.1 – April 2018

10.0.2 – July 2018

Short Term Support September 2018 September 2018 / NA

11 September 2018

11.0.0 LTS

11.0.1 – October 2018

11.0.2 – January 2019

Long Term Support (LTS) *
September 2023 /

September 2026

12 March 2019 - Short Term Support - -

13 September 2019 - Short Term Support - -

14 March 2020 - Short Term Support - -

15 September 2020 - Short Term Support - -

16 March 2021 - Short Term Support - -

17 September 2021 - Long Term Support (LTS) - -

www.hujak.hr 25* https://blogs.oracle.com/java-platform-group/oracle-jdk-releases-for-java-11-and-later

https://blogs.oracle.com/java-platform-group/oracle-jdk-releases-for-java-11-and-later

JDK 9/10 – old news?

• A lot of significant changes

• Java Platform Module System (JPMS)
• All core Java libraries become modules (JEP 220)
• 97 modules: 28 Java SE, 8 JavaFX, 59 JDK, 2 Oracle…
• Most internal APIs encapsulated (JEP 260)

• Deprecated APIs removed
• 1 package, many classes and methods

• Redundant features eliminated
• Numerous deprecated GC options, jhat tool, TI hprof agent…

• Many command line changes
• Removed 200+ -XX flags

www.hujak.hr 26

JDK 10

• JDK 10 was available since
March 20th, 2018
• JSR 383 – Oracle, IBM, Red

Hat, SAP, Azul…
• openjdk.java.net/projects/jdk

/10/

• 109 new features and APIs

• JEPs included
• 286: Local-Variable Type Inference
• 296: Consolidate the JDK Forest into a Single Repository
• 304: Garbage-Collector Interface
• 307: Parallel Full GC for G1
• 310: Application Class-Data Sharing
• 312: Thread-Local Handshakes
• 313: Remove the Native-Header Generation Tool (javah)
• 314: Additional Unicode Language-Tag Extensions
• 316: Heap Allocation on Alternative Memory Devices
• 317: Experimental Java-Based JIT Compiler
• 319: Root Certificates
• 322: Time-Based Release Versioning

www.hujak.hr 27

http://openjdk.java.net/projects/jdk/10/

Local Variable Type Inference

• JEP 286 http://openjdk.java.net/jeps/286
• Extending type inference to declarations of local variables and initializers

• Reducing the ceremony associated with writing Java
• Maintaining the commitment to static type safety

• Examples:
var list = new ArrayList<String>(); // infers ArrayList<String>
var stream = list.stream(); // infers Stream<String>
var m = new HashMap <String, List<BigDecimal>>();

• Guidelines:
• Restricted to: local variables with initializers, indexes in the enhanced for-loop, locals

declared in a traditional for-loop
• Not available for: method parameters, constructor parameters, method return types,

fields, catch formals or any other kind of variable declaration

• Don't blame language features for making developers write sh**y code – Simon Maple

www.hujak.hr 28

http://openjdk.java.net/jeps/286

Garbage Collector Interface

• JEP 304 http://openjdk.java.net/jeps/304

• Introducing a clean GC interface to improve source code isolation of
different GCs
• Better modularity for HotSpot internal GC code
• Simpler to add a new GC to HotSpot without perturbing the current code base
• Make it easier to exclude a GC from a JDK build

• Bits and pieces of GC source files scattered all over the HotSpot sources
• Becomes an issue when implementing a new garbage collector

• BTW, some of our own experimenting with GCs (Parallel, CMS, G1…)
• Comparison of Garbage Collectors in Java Programming Language at MIPRO 2018

www.hujak.hr 29

http://openjdk.java.net/jeps/304

Parallel Full GC for G1

• JEP 307 http://openjdk.java.net/jeps/307

• Improving G1 worst-case latencies by making the full GC parallel
• G1 GC (default GC since JDK 9) designed to avoid full collections
• When concurrent collections can't reclaim memory fast enough – fall back full GC
• Previous G1 implementation was using single threaded algorithm

• Previous default was parallel collector (had parallel full GC)

• To minimize the impact for users experiencing full GCs, the G1 full GC was
made parallel as well
• Intends to parallelize the mark-sweep-compact algorithm

• Use the same number of threads as the Young and Mixed collections do

• Number of threads controlled by the -XX:ParallelGCThreads option
• It will also affect the number of threads used for Young and Mixed collections

www.hujak.hr 30

http://openjdk.java.net/jeps/307

Handshakes, heap allocation, and Unicode

• Thread-Local Handshakes
• JEP 312 openjdk.java.net/jeps/312

• Introduces how to execute a callback on threads, without performing a global VM safepoint

• It is both possible and cheap to stop individual threads and not just all threads or none

• Heap Allocation on Alternative Memory Devices
• JEP 316 openjdk.java.net/jeps/316

• Allocate Java object heap on an alternative memory device (e.g. NV-DIMM)

• Additional Unicode Language-Tag Extensions
• JEP 314 openjdk.java.net/jeps/314

• Enhance java.util.Locale and related APIs to implement additional Unicode extensions of
language tag syntax (BCP 47)

www.hujak.hr 31

http://openjdk.java.net/jeps/312
http://openjdk.java.net/jeps/316
http://openjdk.java.net/jeps/314

Some Housekeeping

• Experimental Java-Based JIT Compiler (Graal)
• JEP 317 openjdk.java.net/jeps/317
• Performance ☺ – hotspots compiled to native
• Enable Graal (Java-based JIT compiler) to be used as experimental JIT compiler

-XX:+UnlockExperimentalVMOptions -XX:+UseJVMCICompiler

• Root Certificates
• JEP 319 openjdk.java.net/jeps/319
• Provide a default set of root Certification Authority (CA) certificates in JDK
• Open source the root certificates in Oracle’s Java SE Root CA program

• Consolidate the JDK Forest into a Single Repository
• JEP 296 openjdk.java.net/jeps/296
• Combine the various repositories of JDK forest into a single repository
• Simplify and streamline development (FX not included)

• Remove the Native-Header Generation Tool (javah)
• JEP 313 openjdk.java.net/jeps/313
• Remove the javah tool from the JDK, superseded by superior functionality in javac

www.hujak.hr 32

http://openjdk.java.net/jeps/317
http://openjdk.java.net/jeps/319
http://openjdk.java.net/jeps/296
http://openjdk.java.net/jeps/313

New APIs

• 73 additional new APIs
• copyOf(Collection) in List, Set and Map
• Optional.orElseThrow() – get or throw
• toUnmodifiableList/Map/Set

• Some APIs removed
• Based on Java SE 10 (18.3) ( JSR 383) Proposed Final Draft Specification

cr.openjdk.java.net/~iris/se/10/pfd/java-se-10-pfd-spec-01/#APIs-removed
• Optional annotation element forRemoval=true to previously deprecated API

elements
• Remove deprecated methods Runtime.getLocalized{Input,Output}Stream
• Remove deprecated pre-1.2 SecurityManager methods and fields
• De-deprecate XMLInputFactory.newFactory()

www.hujak.hr 33

http://cr.openjdk.java.net/~iris/se/10/pfd/java-se-10-pfd-spec-01/#APIs-removed

JDK 11

• JDK 11 is in General Availability
• JSR 384 – Oracle, IBM, Red Hat,

SAP, Azul…

• openjdk.java.net/projects/jdk/11/

• 90 new features in JDK 11
• Post by Simon Ritter

• https://www.azul.com/90-new-
features-and-apis-in-jdk-11/

• Less Developer Visible Features

• What is inside?

• JEPs included
• 181: Nest-Based Access Control
• 309: Dynamic Class-File Constants
• 315: Improve Aarch64 Intrinsics
• 318: Epsilon: A No-Op Garbage Collector
• 320: Remove the Java EE and CORBA Modules
• 321: HTTP Client (Standard)
• 323: Local-Variable Syntax for Lambda Parameters
• 324: Key Agreement with Curve25519 and Curve448
• 327: Unicode 10
• 328: Flight Recorder
• 329: ChaCha20 and Poly1305 Cryptographic Algorithms
• 330: Launch Single-File Source-Code Programs
• 331: Low-Overhead Heap Profiling
• 332: Transport Layer Security (TLS) 1.3
• 333: ZGC: A Scalable Low-Latency Garbage Collector
• 335: Deprecate the Nashorn JavaScript Engine
• 336: Deprecate the Pack200 Tools and APIwww.hujak.hr 34

http://openjdk.java.net/projects/jdk/11/
https://www.azul.com/90-new-features-and-apis-in-jdk-11/

Local-Variable Syntax for Lambda
Parameters

• JEP 323 http://openjdk.java.net/jeps/323

• Extending Local-Variable Type Inference (JEP 286) – but now for Lambda expressions
• Uniformity of local variables and lambdas

• Allow var when declaring formal parameters of implicitly typed lambda expressions
(var x, var y) -> x.process(y)

• For all formal parameters or none of them
(var x, y) -> x.process(y) // Can't mix 'var' and 'no var' in implicitly typed lambdas

• Explicitly typed lambda expressions continue to use data types for all their formal
parameters
(var x, int y) -> x.process(y) // Can't mix 'var' and data types in explicitly typed lambdas

• Not compromising the brevity of the shorthand syntax
var x -> x.foo() // is not allowed

www.hujak.hr 35

http://openjdk.java.net/jeps/323

Local-Variable Syntax for Lambda
Parameters – Example

• Example (by Simon Ritter):
list.stream()

.map((var s) -> s.toLowerCase())

.collect(Collectors.toList());

• Lambda expressions already have type inference so use of var is not necessary:
list.stream()

.map(s -> s.toLowerCase())

.collect(Collectors.toList());

• When adding an annotation to Lambda parameter you have to use a (explicit) type, and
we can use var instead
list.stream()

.map((@Notnull var s) -> s.toLowerCase())

.collect(Collectors.toList());

• Also causes changes to the Java Language Specification (JLS) :
• Description of the var special identifier, Lambda parameters, Runtime evaluation of Lambda

expressions, and Lambda syntax

www.hujak.hr 36

Launch Single-File Source-Code Programs

• JEP 330 http://openjdk.java.net/jeps/330

• Run a program supplied as a single file of Java source code
• Reduce the ‘ceremony’ of running trivial applications
• Including usage from within a script by means of "shebang" files and related techniques

• Example:
java HelloWorld.java

• Parameters:
• After the name of the source file are passed as parameters when executing application
• Before the name of the source file are passed as parameters to launcher after code has been compiled

• Example:
java -classpath /home/foo/java Hello.java Bonjour

• is equivalent to:
javac -classpath /home/foo/java Hello.java
java -classpath /home/foo/java Hello Bonjour

www.hujak.hr 37

http://openjdk.java.net/jeps/330

Launch Single-File Source-Code Programs –
Shebang files support

• Usage from within a script by means of "shebang" files and related techniques

• "Shebang" file – small utility single-file program starting with #!
#!interpreter [optional-arg]
• On Unix-derived systems (Linux, macOS)
• Allows a script or source code to be placed in any executable file (whose first line begins with #!),

specifying name of a program to "execute" the contents of the file

• Reducing the need to even mention the Java launcher on the command line

• Simply included on the first line of the source file

• Example:
#!/usr/bin/java --source 11

public class HelloWorld {
...

• However, necessary to specify the –source flag with the version of Java

www.hujak.hr 38

HTTP Client (Standard)

• JEP 321 http://openjdk.java.net/jeps/321

• New API in JDK 9 to provide support for the HTTP Client protocol (JEP 110) with
HTTP/2 support
• Since JDK 9 introduced the Java Platform Module System (JPMS), it was included as an

incubator module
• Later updated in JDK 10

• HTTP Client API is now part of the Java SE 11 standard

• New module and package java.net.http

• Main types:
• HttpClient, HttpRequest, HttpResponse, WebSocket

• API can be used synchronously or asynchronously
• Asynchronous mode makes use of CompletableFutures and CompletionStages

www.hujak.hr 39

http://openjdk.java.net/jeps/321

HTTP Client (Standard) – Some details

• While incubating in JDK 9 and JDK 10, implementation was almost completely rewritten

• The implementation is now completely asynchronous
• Previous HTTP/1.1 implementation was blocking

• Provides non-blocking request and response semantics through CompletableFutures
• Which can be chained to trigger dependent actions

• Back-pressure and flow-control of request and response bodies is provided for via the
Platform's reactive-streams support in the java.util.concurrent.Flow API

• Use of the RX Flow concept has been pushed down into the implementation
• Eliminated many of the original custom concepts needed to support HTTP/2

• The flow of data can now be more easily traced
• From user-level request publishers and response subscribers down to the underlying socket
• Significantly reduces the number of concepts and complexity in the code
• Maximizes the possibility of reuse between HTTP/1.1 and HTTP/2

www.hujak.hr 40

Remove Java EE and CORBA Modules

• JEP 320 http://openjdk.java.net/jeps/320

• Remove Java EE and CORBA modules from Java SE Platform and JDK
• Modules deprecated in Java SE 9 with intent to remove them in a future

• Java SE 6 included a full Web Services stack (originally developed for the
Java EE Platform):
• JAX-WS (Java API for XML-Based Web Services)

• JAXB (Java Architecture for XML Binding)

• JAF (the JavaBeans Activation Framework)

• Common Annotations

www.hujak.hr 41

http://openjdk.java.net/jeps/320

Remove Java EE and CORBA Modules #2

• JEP 320 http://openjdk.java.net/jeps/320 cont'd

• At the time of inclusion, versions in Java SE and Java EE were identical
• Except one package in Common Annotations

• Over time, versions in Java EE evolved (difficulties for versions in Java SE):
• Technologies gained features that were not relevant to Java SE (like Common Annotations

package for data sources in a Java EE container)
• Maintenance problematic due to having to sync the Java SE (in OpenJDK) with the Java EE

versions (in upstream repositories)
• Possible to obtain standalone versions of the technologies from the upstream projects and

deploy them – unfortunately, it was not widely used in practice

• With JPMS we can divide the monolithic rt.jar file into multiple modules
• Additionally possible to create a Java runtime only with modules you need – reduces size

www.hujak.hr 42

http://openjdk.java.net/jeps/320

Remove Java EE and CORBA Modules

• Java.se.ee meta-module includes six modules that are no longer part of JDK:
• corba

• transaction

• activation

• xml.bind

• xml.ws

• xml.ws.annotation

• If you still use APIs from these modules in your code, you supply them as a
separate module or library

• It seems that the java.xml modules, which are part of the JAX-WS, SOAP-based
web services support are the ones that are causing most problems

www.hujak.hr 43

Flight Recorder

• JEP 328 http://openjdk.java.net/jeps/328
• Low-overhead data collection framework for troubleshooting Java applications

on JVM
• Prior to JDK 11 it was a commercial feature in Oracle JDK binary
• Oracle eliminated functional differences between Oracle JDK and OpenJDK and it

was contributed to the OpenJDK
• Goals:

• Provides APIs for producing and consuming data as events
• Provides a buffer mechanism and a binary data format
• Allows the configuration and filtering of events
• Provides events for the OS, the HotSpot JVM, and the JDK libraries

• Two new modules : jdk.jfr and jdk.management.jfr

www.hujak.hr 44

http://openjdk.java.net/jeps/328

New API in JDK 11

• A lot of the new APIs in JDK 11
• For a complete list of API changes, comparison by Gunnar Morling

• https://gunnarmorling.github.io/jdk-api-diff/jdk10-jdk11-api-diff.html

• 6 new classes and 8 methods in java.security modules
• Specific to the changes of JEP 324 and JEP 329

• New methods
• In 8 slides

www.hujak.hr 45

https://gunnarmorling.github.io/jdk-api-diff/jdk10-jdk11-api-diff.html

New Methods in JDK 11

• New methods – java.io:

• java.io.ByteArrayOutputStream
• void writeBytes(byte[]) – write all the bytes of the parameter to the output stream

• java.io.FileReader
• Two new constructors that allow a Charset to be specified

• java.io.FileWriter
• Four new constructors that allow a Charset to be specified

• java.io.InputStream
• io.InputStream nullInputStream() – returns an InputStream that reads no bytes

• java.io.OutputStream
• io.OutputStream nullOutputStream() – like dev/null

• java.io.Reader
• io.Reader nullReader()

• java.io.Writer
• io.Writer nullWriter()

www.hujak.hr 46

New Methods in JDK 11 #2

• New methods – java.lang:
• java.lang.Character

• String toString(int) – overloaded form takes an int instead of a char as Unicode code point

• java.lang.CharSequence
• int compare(CharSequence , CharSequence) – compares two CharSequence instances

lexicographically
• Negative, zero, or positive if 1st CharSequence is lexicographically less than, equal to, or

greater than 2nd CharSequence, respectively

• java.lang.ref.Reference
• lang.Object clone() – confusing, maybe for the future

• java.lang.System and java.lang.Runtime
• No new methods, runFinalizersOnExit() method removed

• java.lang.Thread
• No additional methods, destroy() and stop(Throwable) methods removed

www.hujak.hr 47

New Methods in JDK 11 #3

• New methods – java.lang:
• java.lang.String

• boolean isBlank() – returns true if string is empty or contains only white space codepoints
• Stream lines() – returns a stream of lines extracted from this string, separated by line

terminators
• String repeat(int) – returns a string whose value is the concatenation of this string repeated

count times
• String strip() – returns a string whose value is this string, with all leading and trailing

whitespace removed (different whitespace treatment than in trim())
• String stripLeading() – returns a string whose value is this string, with all leading whitespace

removed
• String stripTrainling() – returns a string whose value is this string, with all trailing whitespace

removed

• java.lang.StringBuffer and java.lang.StringBuilder
• New compareTo() method that takes a StringBuffer/StringBuilder and returns an int

(lexographical comparison same as for CharSequence)
www.hujak.hr 48

New Methods in JDK 11 #4

• New methods – java.nio:

• java.nio.ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, LongBuffer, ShortBuffer
• mismatch() - finds and returns the relative index of the first mismatch between this buffer and a

given buffer

• java.nio.channels.SelectionKey
• int interestOpsAnd(int) – atomically sets this key’s interest set to the bitwise intersection ("and") of

the existing interest set and the given value
• int interestOpsOr(int) – atomically sets this key’s interest set to the bitwise union ("or") of the

existing interest set and the given value

• java.nio.channels.Selector
• int select(java.util.function.Consumer, long) – selects and performs an action on the keys whose

corresponding channels are ready for I/O operations with timeout
• int select(java.util.function.Consumer) – as above, except without the timeout
• int selectNow(java.util.function.Consumer) – as above, except it is non-blocking

www.hujak.hr 49

New Methods in JDK 11 #5

• New methods – java.nio (cont'd):
• java.nio.file.Files

• String readString(Path): Reads all content from a file into a string, decoding from bytes to
characters using the UTF-8 charset.

• String readString(Path, Charset): As above, except decoding from bytes to characters using
the specified Charset.

• Path writeString(Path, CharSequence, java.nio.file. OpenOption[]:Write a CharSequence to a
file. Characters are encoded into bytes using the UTF-8 charset.

• Path writeString(Path, CharSequence, java.nio.file. Charset, OpenOption[]: As above, except
Characters are encoded into bytes using the specified Charset.

• java.nio.file.Path
• Path of(String, String[]): Returns a Path by converting a path string, or a sequence of strings

that when joined form a path string.
• Path of(net.URI): Returns a Path by converting a URI

www.hujak.hr 50

New Methods in JDK 11 #6

• New methods – java.util:

• java.util.concurrent.PriorityBlockingQueue and java.util.PriorityQueue
• void forEach(java.util.function.Consumer): Performs the given action for each element of the Iterable until

all elements have been processed or the action throws an exception.
• boolean removeAll(java.util.Collection): Removes all of this collection’s elements that are also contained in

the specified collection (optional operation).
• boolean removeIf(java.util.function.Predicate): Removes all of the elements of this collection that satisfy

the given predicate.
• boolean retainAll(java.util.Collection): Retains only the elements in this collection that are contained in the

specified collection (optional operation).

• java.util.concurrent.TimeUnit
• long convert(java.time.Duration): Converts the given time duration to this unit.

• java.util.function.Predicate
• Predicate not(Predicate). Returns a predicate that is the negation of the supplied predicate
• Example: convert lines.stream().filter(s -> !s.isBlank()) to

lines.stream().filter(Predicate.not(String::isBlank))
with static import lines.stream().filter(not(String::isBlank))

www.hujak.hr 51

New Methods in JDK 11 #7

• New methods – java.util:

• java.util.Optional, OptionalInt, OptionalDouble, OptionalLong
• boolean isEmpty():If a value is not present, it returns true, otherwise it is false.

• java.util.regex.Pattern
• Predicate asMatchPredicate(): I think this could be a hidden gem in the new JDK 11 APIs. It creates a predicate that

tests if this pattern matches a given input string.

• java.util.zip.Deflater
• int deflate(ByteBuffer): Compresses the input data and fills the specified buffer with compressed data.
• int deflate(ByteBuffer, int): Compresses the input data and fills the specified buffer with compressed data. Returns the

actual number of bytes of data compressed.
• void setDictionary(ByteBuffer): Sets the preset dictionary for compression to the bytes in the given buffer. This is an

overloaded form of an existing method that can now accept a ByteBuffer, rather than a byte array.
• void setInput(ByteBuffer): Sets input data for compression. Also an overloaded form of an existing method.

• java.util.zip.Inflater
• int inflate(ByteBuffer): Uncompresses bytes into the specified buffer. Returns the actual number of bytes

uncompressed.
• void setDictionary(ByteBuffer): Sets the preset dictionary to the bytes in the given buffer. An overloaded form of an

existing method.
• void setInput(ByteBuffer): Sets input data for decompression. An overloaded form of an existing method.

www.hujak.hr 52

New Methods in JDK 11 #8

• New methods – javax.print, javax.swing, and jdk.jshell:

• javax.print.attribute.standard.DialogOwner
• This is a new class in JDK 11 and is an attribute class used to support requesting a print or page setup

dialog be kept displayed on top of all windows or some specific window.

• javax.swing.DefaultComboBoxModel, DefaultListModel
• void addAll(Collection): Adds all of the elements present in the collection.
• void addAll(int, Collection): Adds all of the elements present in the collection, starting from the

specified index.

• javax.swing.ListSelectionModel
• int[] getSelectedIndices(): Returns an array of all of the selected indices in the selection model in

increasing order.
• int getSelectedItemsCount(): Returns the number of selected items.

• jdk.jshell.EvalException
• jshell.JShellException getCause(): Returns the wrapped cause of the throwable in the executing client

represented by this EvalException or null if the cause is non-existent or unknown.

www.hujak.hr 53

Nest-Based Access Control

• JEP 181 http://openjdk.java.net/jeps/181

• Java supports nesting of classes through inner classes
• Logically, the inner class is part of the same code entity as the outer class
• However, it is compiled as a separate class
• Synthetic bridge method is created by the compiler to provide access to the private field of the outer class

• Introducing the concept of nests
• Two members of the same nest (e.g., outer and inner class) are nestmates
• NestHost and NestMembers attributes are defined for the class file format
• Useful also for other languages compiled to bytecodes that support nested classes

• This feature introduces three new methods to java.lang.Class:
• Class getNestHost()
• Class[] getNestMembers()
• boolean isNestmateOf(Class)

• Changes to JVMS in Access Control

www.hujak.hr 54

http://openjdk.java.net/jeps/181

Dynamic Class-File Constants

• JEP 309 http://openjdk.java.net/jeps/309
• Extension of the class-file format to support a new constant-pool form

CONSTANT_Dynamic (or "condy")
• Idea of a dynamic constant seems to be an oxymoron
• However, similar to a final value in Java
• Like invokedynamic but for class-file constants

• Constant-pool value uses a bootstrap method to determine the value at
runtime, not at compile-time (unlike the other constants)
• Value is therefore "dynamic", but (since its value is only set once) it is also "constant"

• Simplifications primarily aimed at development of new JVM languages and
compilers that generate bytecodes

• Introduces java.lang.invoke.ConstantBootstraps class with 9 new bootstrap
methods for dynamically computed constants

• Changes to the JVMS in usage of invokespecial bytecode and Constant Pool
www.hujak.hr 55

http://openjdk.java.net/jeps/309

Cryptographic-related changes

• Key Agreement with Curve25519 and Curve448
• JEP 324 http://openjdk.java.net/jeps/324

• Replacing existing elliptic curve Diffie-Hellman (ECDH) scheme with Curve25519 and
Curve448

• Key agreement scheme defined by RFC-7748

• ChaCha20 and Poly1305 Cryptographic Algorithms
• JEP 329 http://openjdk.java.net/jeps/329

• Implementation of ChaCha20 and ChaCha20-Poly1305 ciphers as specified in RFC
7539, replacing the older insecure RC4 stream cipher

www.hujak.hr 56

http://openjdk.java.net/jeps/324
http://openjdk.java.net/jeps/329

Garbage Collection

• ZGC A Scalable, Low Latency Garbage Collector
• JEP 333 http://openjdk.java.net/jeps/333
• New experimental garbage collector designed for applications that require a large

(multi-gigabyte) heap and low-latency
• Uses a single generation heap and performs most of GC concurrently with the

application
• Read-barrier that intercepts each read to an object from the application and ensures

that the reference returned is correct
• Eliminates issue of being able to relocate objects concurrently while application

threads are running
• Region-based (like G1), NUMA aware and compacting
• Not intended as a general-purpose collector

www.hujak.hr 57

http://openjdk.java.net/jeps/333

Garbage Collection #2

• Epsilon: A No-Op Garbage Collector
• JEP 318 http://openjdk.java.net/jeps/318 (by Red Hat)

• Epsilon Garbage Collector handles memory allocation but does not implement any
actual memory reclamation mechanism of space occupied by unreferenced objects

• Designed to test and compare GC performance with and without GC

• For very short-lived tasks (like serverless functions in the cloud) which do not exceed
the memory allocated to the heap

www.hujak.hr 58

http://openjdk.java.net/jeps/318

Other JEPs in JDK 11

• Unicode 10
• JEP 327 http://openjdk.java.net/jeps/327

• Support for Unicode 10.0 standard with 8,518 new symbols

• Includes more Emojis, Bitcoin symbol, Nüshu character set, as well as Soyombo and
Zanabazar Square

• Improve Aarch64 Intrinsics
• JEP 315 http://openjdk.java.net/jeps/315 (by Red Hat)

• Take advantage of specialized instructions in Arm64 instruction set

• Improves performance of sin(), cos() and log() methods of the java.lang.Math class

www.hujak.hr 59

http://openjdk.java.net/jeps/327
http://openjdk.java.net/jeps/315

Housekeeping continues

• Removals in JDK 11
• Applets, Browser Plugin, Web Start, Java FX

• Deprecate the Nashorn Scripting Engine
• JEP 335 http://openjdk.java.net/jeps/335
• Deprecates Nashorn introduced in JDK 8 as a replacement of Rhino Javascript engine
• Suggests using Graal VM as replacement

• How that will work has not been evaluated

• Completely remove Nashorn with associated APIs and jjs tool in the future

• Deprecate the Pack200 Tools and APIs
• JEP 336 http://openjdk.java.net/jeps/336
• With JPMS in JDK 9, Pack200 a compression scheme for JARs is no longer used
• Deprecates pack200 and unpack200 tools, and Pack200 API in java.util.jar, and may be

removed in a future

www.hujak.hr 60

http://openjdk.java.net/jeps/335
http://openjdk.java.net/jeps/336

Others

• Low-overhead Heap Profiling
• JEP 331 http://openjdk.java.net/jeps/331 (by Google)
• Provides a way to get information about Java object heap allocations from the JVM that:

• Is low-overhead enough to be enabled by default continuously
• Is accessible via a well-defined, programmatic interface
• Can sample all allocations
• Can be defined in an implementation-independent way (i.e., not limited to a particular GC algorithm

or VM implementation)
• Can give information about both live and dead Java objects

• Transport Layer Security (TLS) 1.3
• JEP 332 http://openjdk.java.net/jeps/332
• Implementation of TLS 1.3 (RFC 8446) which provides significant security and performance

improvements over previous versions
• Does not extend to Datagram Transport Layer Security (DTLS)

www.hujak.hr 61

http://openjdk.java.net/jeps/331
http://openjdk.java.net/jeps/332

JDK 12

• JDK 12 is currently in Early Draft Review
• JSR 386 – usual suspects: Oracle, IBM, Red Hat, SAP, Azul…
• openjdk.java.net/projects/jdk/12/

• Schedule:
• 2018/05 Expert Group formation
• 2018/07 Early Draft Review
• 2018/10 - 2018/11 Public Review
• 2019/01 - 2019/02 Proposed Final Draft
• 2019/03 Final Release

• JEPs targeted to JDK 12, so far:
• Switch Expressions (JEP 325)
• Raw String Literals (JEP 326)

www.hujak.hr 62

http://openjdk.java.net/projects/jdk/12/

More Long-term Future

• Project Amber – incubator for smaller, productivity-oriented language features
and simplifying syntax
• Local variable type inference, local variable syntax for lambdas, lambda leftovers, raw string

literals, pattern matching, switch expressions…

• Project Valhalla – incubator project for advanced JVM and language feature
candidates
• Value types and specialized generics

• Project Panama – to interconnect JVM and native code
• Foreign function interface (FFI) replacement for JNI

• Project Loom – to reduce complexity in writing concurrent applications
• Fibres (JVM-level threads) and continuations

• Project Metropolis – JVM re-written in Java, i.e. "Java on Java"
• Using Graal experience, easier porting, performance to be explored (AOT compiler)

www.hujak.hr 63

Project Amber

• Project Amber includes:
• Local variable type inference (JEP 286) – delivered in JDK 10
• Local variable syntax for lambda parameters (JEP 323) – delivered in JDK 11
• Switch Expressions (JEP 325) – expressions in switch statements (lambdas) –

planned for JDK 12
• Raw string literals (JEP 326) – use of single backquote – planned for JDK 12
• Lambda leftovers (JEP 302) – underscore for unused parameters – in progress
• Pattern matching (JEP 305) – switch statement with case for different types of

objects – in progress
• Enhanced Enums (JEP 301) – generic enums with type parameters – currently on

hold

• More at openjdk.java.net/projects/amber/

www.hujak.hr 64

http://openjdk.java.net/projects/amber/

Raw string literals (JEP 326) – examples

Runtime.getRuntime().exec
("\"C:\\Program Files\\foo\" bar");

System.out.println
("this".matches("\\w\\w\\w\\w"));

String html =
"<html>\n" +

" <body>\n" +

" <p>Hello
World.</p>\n" +

" </body>\n" +

"</html>\n";

Runtime.getRuntime().exec
(`"C:\Program Files\foo" bar`);

System.out.println
("this".matches(`\w\w\w\w`));

String html =

`<html>

<body>

<p>Hello World.</p>

</body>

</html>

`;

www.hujak.hr 65

Pattern matching (JEP 305) – example

String formatted;
switch (obj) {

case Integer i:
formatted = String.format("int %d", i);
break;

case Long l:
formatted = String.format("long %d", l);
break;

case Double d:
formatted = String.format(“double %f", d);
break;

case String s:
formatted = String.format("String %s", s);
break

default:
formatted = obj.toString();

}

www.hujak.hr 66

Switch Expressions (JEP 325) – example

int numLetters;
switch (day) {

case MONDAY:
case FRIDAY:
case SUNDAY:

numLetters = 6;
break;

case TUESDAY:
numLetters = 7;
break;

case THURSDAY:
case SATURDAY:

numLetters = 8;
break;

case WEDNESDAY:
numLetters = 9;
break;

default:
throw new IllegalStateException("Hmm: " + day);

};

int numLetters = switch (day) {
case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY -> 7;
case THURSDAY, SATURDAY -> 8;
case WEDNESDAY -> 9;
default -> throw new

IllegalStateException(
"Hmm: " + day);

};

www.hujak.hr 67

Project Valhalla

• Incubator project for advanced Java VM and language feature candidates

• Problem:
• Java uses primitives for performance and objects for OO, encapsulation, polymorphism,

inheritance
• But no ArrayList<int>
• If we use Integer than (un)boxing, creation of object, heap, indirection reference…

• Value Objects (JEP 169) – "codes like a class, works like a primitive"
• Supports methods, fields, implements interface, encapsulation, generic…
• Doesn't support mutation or sub-classes

• Generics over Primitive Types (JEP 218) – extends generic types to support the
specialization of generic classes and interfaces over primitive types

• More at openjdk.java.net/projects/valhalla/

www.hujak.hr 68

http://openjdk.java.net/projects/valhalla/

Project Panama and Project Loom

• Project Panama – interconnecting JVM and native code
• Featuring native function calling from the JVM and native data access from the JVM
• Foreign function interface (FFI) replacement for JNI
• More at http://openjdk.java.net/projects/panama/

• Project Loom – reducing complexity in writing concurrent applications
• Alternative, user-mode thread implementations, delimited continuations, and

other constructs involving call-stack manipulation
• Proposal for lightweight fibres (JVM-level threads) as alternative implementation of

threads, managed by schedulers like ForkJoinPool, written in Java
• Java programming model of ordinary Java threads would be preserved while

performance is improved and the footprint reduced
• Less memory and almost zero overhead when task switching
• More at http://openjdk.java.net/projects/loom/

www.hujak.hr 69

http://openjdk.java.net/projects/panama/
http://openjdk.java.net/projects/loom/

Backwards Compatibility

• It will be respected ☺

• But with no guarantees

• New version may include breaking changes

• Anything for removal will be deprecated first
• Minimum of one release warning (6+ months)

www.hujak.hr 70

Container Awareness and Java Jakarta EE

• JVM more Docker container aware
• Uses container CPU count and memory size

• Open sourcing Java EE
• Jakarta EE as a part of Eclipse Foundation

• jakarta.ee/ – The New Home of Cloud Native Java

• Jakarta EE Developer Survey 2018, Eclipse Foundation
• jakarta.ee/news/2018/04/24/jakarta-ee-community-survey/

• Current status
• blogs.eclipse.org/post/mike-milinkovich/jakarta-ee-status-%E2%80%93-september-2018-update

www.hujak.hr 71

https://jakarta.ee/
https://jakarta.ee/news/2018/04/24/jakarta-ee-community-survey/
https://blogs.eclipse.org/post/mike-milinkovich/jakarta-ee-status-%E2%80%93-september-2018-update

Is Java really "Moving Forward Faster"?

• Well… yeah ☺

• Much more frequent Java releases

• Faster access to new features

• Many new improvement ideas

• A lot of maintenance and housekeeping

• Java remains free

• BTW, what about JavaOne?

www.hujak.hr 72

No more "JavaOne"?

• In 2018 JavaOne is larger than ever

• However, it goes by a new name…

• Oracle Code One –
a conference for all developers
• October 22-25, San Francisco
• Usual prices $1400-$2000

• Keynotes:
• www.oracle.com/code-one/keynotes.html

• On Demand Streaming:
• www.oracle.com/code-one/on-demand.html

• 11 tracks:
• Core Java Platform
• Java Server-Side Development and

Microservices
• Java Ecosystem
• Containers, Serverless, and Cloud
• Emerging Technologies
• Modern Web
• Development Tools
• DevOps and Pipelines
• Developer Community
• Database, Big Data, and Data Science
• MySQL

www.hujak.hr 73

http://www.oracle.com/code-one/keynotes.html
http://www.oracle.com/code-one/on-demand.html

Back to Croatian Reality

• But before that – one nice link:
https://snyk.io/blog/jvm-ecosystem-report-2018

www.hujak.hr 74

https://snyk.io/blog/jvm-ecosystem-report-2018

A few nice things in 2017/2018…

• Java Zagreb meetups – many great meetups so far

• Java in high schools initiative
• Together with Oracle Academy

• Croatian Makers league continues
• Micro:bit, Logo, mBot, Scratch, Arduino, Little Bits…

• Program Digitalna akademija
• ScratchJr, RunMarco, Studio Code, Play Lab, Scratch i App studio,

micro:bit, Arduino…

• Code Club Croatia and udruga Programerko

• Udruga za darovitu djecu "Dar"

• Great Javantura and JavaCro conferences
www.hujak.hr 75

Where to study IT in Croatia?

• Java at Universities
• Java is #1 for decades!!! ☺

• Where to study computing / computer science / information technology?
• 15+ cities: Čakovec, Dubrovnik, Krapina, Križevci, Osijek, Pula, Rijeka, Sisak, Split,

Šibenik, Varaždin, Velika Gorica, Zabok, Zagreb, Zaprešić
• 33+ educational organizations, including:

• 6 public universities
• 13 private high schools

• 80+ educational programs
• Undergraduate (3-4 years)
• Graduate (1-2 years)
• Professional
• Postgraduate

www.hujak.hr 76

Javantura conference

• One Saturday in February

• 26 sessions

• 300 attendees

• Tickets with 50% discount for students

Looking forward to
Javantura v6

on February 23rd, 2019
in Zagreb☺

www.hujak.hr 77

Conferences HUJAK supports

www.hujak.hr 78

Calendar of Java-relates Conferences in EU

• Available at:
hujak.hr/kalendar/

• If we are missing some please send
email to info (at) hujak.hr

• Another great conference list at
www.baeldung.com/java-
conferences-europe

www.hujak.hr 79

https://hujak.hr/kalendar/
http://www.baeldung.com/java-conferences-europe

45+ company members

www.hujak.hr 80

Partners & Friends

www.hujak.hr 81

Thank you & greetings from HUJAK!

• Web page hujak.hr
• www.hujak.hr

• LinkedIn group HUJAK
• www.linkedin.com/groups?gid=4320174

• Facebook group page HUJAK.hr
• www.facebook.com/HUJAK.hr

• Twitter profile @HUJAK_hr
• twitter.com/HUJAK_hr

www.hujak.hr 82

