Predicting Beer Ratings with in-database machine learning and APEX (in ATP)

Heli Helskyaho @HeliFromFinland

Introduction, Heli

- Graduated from University of Helsinki (Master of Science, computer science), currently a doctoral student, researcher and lecturer (databases, Big Data, Multi-model Databases, methods and tools for utilizing semi-structured data for decision making) at University of Helsinki
- * Worked with Oracle products since 1993, worked for IT since 1990
- * Data and Database!
- * CEO for Miracle Finland Oy
- * Oracle ACE Director, Oracle Groundbreaker Ambassador
- * Ambassador for EOUC (EMEA Oracle Users Group Community)
- * Listed as one of the TOP 100 influencers on IT sector in Finland (2015, 2016, 2017, 2018)
- Public speaker and an author
- * Winner of Devvy for Database Design Category, 2015
- * Author of the book Oracle SQL Developer Data Modeler for Database Design Mastery (Oracle Press, 2015), co-author for Real World SQL and PL/SQL: Advice from the Experts (Oracle Press, 2016)

Oracle SQL Developer Data Modeler for Database Design Mastery

Design, Deploy, and Maintain World-Class Databases on Any Platform

Heli Helskyaho Grade ACE Director Forewords by C.J. Date and Tom Kyte

RACLE

Real World SQL & PL/SQL

Advice from the Experts

Arup Nanda Brendan Tierney Heli Helskyaho Martin Widlake Alex Nuijten

ORACLE'

500+ Technical Experts Helping Peers Globally ORACLE[®] ACE Program

3 Membership Tiers

- Oracle ACE Director
- Oracle ACE
- Oracle ACE Associate

bit.ly/OracleACEProgram

Nominate yourself or someone you know: acenomination.oracle.com

* The DATA

- * Why to move the data?
 - * It usually is a lot of data...
 - * No hassle with moving the data
- * Preparing the data is the hard part (80/20)
 - * Doing it in the database is the easiest way
 - * Database is the natural environment for handling data

- * The SKILLS needed already acquired
 - * You already know SQL and PL/SQL

- * The database has APEX
 - * You can use APEX for visualizing the data and the process

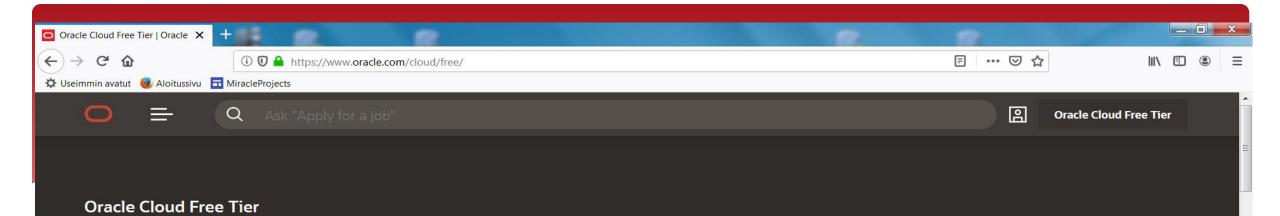
* The deployment

 table, view, PL/SQL Package, Function, Procedure,... is easily used with many technologies

* ...

In-database Machine Learning

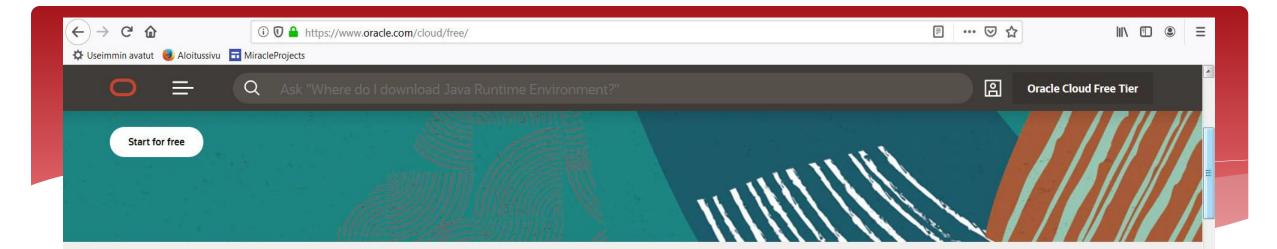
- "Oracle Machine Learning" is a Zeppelin based SQL notebook that is available with ADW and ATP
- * Oracle Database Advanced Analytics (OAA) =
 - * Oracle DB + Oracle Data Mining (ODM) (+Data Miner GUI in Oracle SQL Developer) +
 - * Oracle R Enterprise (ORE)
- * Predictive Analytics with Oracle Data Mining (ODM)
- * Predictive Queries with Oracle Analytic Functions


Advanced analytics (and ODM)

* is a **licensed product**

- * in the EE database separately licensed
- in the Cloud included in: Database Service either High Performace Package or Extreme Performance Package

* Make sure to check the licenses before using


New Always Free Services

Build, test, and deploy applications on Oracle Cloud—for free. Sign up once, get access to two free offers.

Start for free

What's included with Oracle Cloud Free Tier?

What's included with Oracle Cloud Free Tier?

New Always Free

Services you can use for an unlimited time.

- Two Oracle Autonomous Databases with powerful tools like Oracle Application Express (APEX) and Oracle SQL Developer
- Two Oracle Cloud Infrastructure Compute VMs; Block, Object, and Archive Storage; Load Balancer and data egress; Monitoring and Notifications

See below for a list of eligible services

30-day Free Trial

US\$300 in free credits.

- Access to a wide range of Oracle Cloud services for 30 days, including Databases, Analytics, Compute, and Container Engine for Kubernetes
- Up to eight instances across all available services
- Up to 5 TB of storage
- See below for a list of eligible services

Oracle Cloud Infrastructure

New Free Tier

oracle.com/gbtour

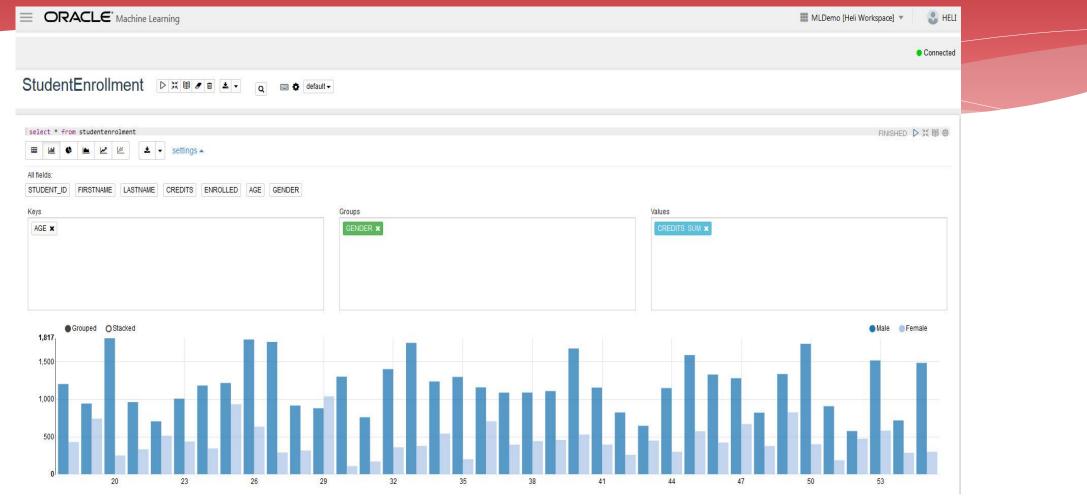
Always Free

Services you can use for unlimited time

30-Day Free Trial

Free credits you can use for more services

APEX, ORDS, SQL Developer in ATP and ADW


<u></u>	Autonomous Transaction Proce X +	
) → C' û Useimmin avatut 🥑 Aloitussivu 🖬 I	A https://adb.us-ashburn-1.oraclecloud.com/console/?service=atp&tenant=ocid1.tenancy.oc1az iriacleProjects	aaaaaaaaezkn4r2sikxw3bdx62eww70 📄 ···· 🖸 🏠 👱 🔟 🗓 🕲 Ξ
ORACLE Cloud Infrastructure	ninacter rojects	<u></u>
utonomous ansaction Processing werview	<i>Oracle Application Express</i> Oracle Application Express (APEX) provides a low-code development environment that enables you to build apps in a single, extensible platform, which is fully supported by Autonomous Database.	© SQL Developer Web provides a browser-based integrated development environment and administration interface for Oracle Autonomous Database. It provides a subset of the features available in the desktop product.
Activity Administration Development ATABASE DB201901100956	(i) Oracle ML SQL Notebooks Oracle Machine Learning SQL notebooks provide easy access to Oracle's parallelized, scalable in-database implementations of a library of Oracle Advanced Analytics' machine learning algorithms (classification, regression, anomaly detection, clustering, associations, attribute importance, feature extraction, times series, etc.), SQL, PL/SQL and Oracle's statistical and analytical SQL functions.	(i) This is a free, light-weight set of tools, libraries and SDKs for building and connecting applications. These libraries underly the Oracle APIs of languages including Node.js, Python and PHP and provide access for OCI, OCCI, JDBC, ODBC and Pro*C applications. Tools such as SQL*Plus and Oracle Data Pump are also included - Oracle recommends using this version of Data Pump for moving existing Oracle Database schemas to Autonomous Transaction Processing.

Terms of Use and Privacy Send Feedback

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Oracle Machine Learning in ATP and ADW

Miracle Finland Oy

Oracle DB and Python

- * Python
- * Cx_Oracle (pip install)
- * Oracle Instant Client
 - * same version 32/64 as your Python
 - * add to the path
 - * 19 will not work with Windows 7, 18 does
- * Oracle DB/ATP/ADW (TNS_ADMIN, instant client.../network/admin)
 - * Sqlnet.ora
 - * Tnsnames.ora
 - * Wallet

Data Dictionary Views for ODM

Table 2-1 Data Dictionary Views for Oracle Data Mining

View Name	Description
ALL_MINING_MODELS	Provides information about all accessible mining models
ALL_MINING_MODEL_ATTRIBUTES	Provides information about the attributes of all accessible mining models
ALL_MINING_MODEL_PARTITIONS	Provides information about the partitions of all accessible partitioned mining models
ALL_MINING_MODEL_SETTINGS	Provides information about the configuration settings for all accessible mining models
ALL_MINING_MODEL_VIEWS	Provides information about the model views for all accessible mining models
ALL_MINING_MODEL_XFORMS	Provides the user-specified transformations embedded in all accessible mining models.

Machine Learning in short

* Supervised learning

- * Regression, how much? How many?, numbers
- * *Classification,* Is it this or that?, groups/classes
- * Anamoly detection (classification), Is this weird?
- * Unsupervised learning
 - * *Clustering,* Which groups? Group them in 5 groups
- * Reinforcement learning
 - * which action? feedback positive/negative

Machine Learning in short

- * Use the right *Features*
 - * with right Algorithms
 - * to build the right *Models*
 - * that achieve the right Tasks

Machine Learning

- 1. Defining the Task, understanding the Task
- 2. Collecting the data, understanding the data
 - 1. Attributes (Features, Columns)
 - 2. Exploring
 - 3. Preparing the data/Transforming the data
- 3. Creating a Model
 - 1. Model (Function)
 - 2. Algorithm
- 4. Train, test (validate)
- 5. Evaluate the models
- 6. Scoring and Deployment

Beer rating

Define the Task

- * The Task: Predict the overall rating for a beer
 - * Find the beers that will most likely be rated as 5
 - * Find the brewers that most likely will make beer rated as 5

* We will use Supervised Learning and Classification, our target attribute is OVERALL (values 1-5)

Collecting the data

- * <a>www.kaggle.com/c/beer-ratings/data
- * Beer_train, all know input and output
- * (Beer_test, only known input, output unknown)
- * In the demo we will use Beer_train but we call it Beer_data
- * For deployment we will use Beer_Test

The data

- * For Supervised Learning the data must be divided in *two* sets:
 - * one for *training* the other one for *testing* the model really works (validation).
 - * In the demo we will split Beer_data in to two sets:
 - * Beer_training_data
 - * Beer_testing_data
- * The data requirements for ODM:
 - * Data must be stored in a single table or view (a case table)
 - * Each record must be stored in a *separate* row as **a** case
 - * Each case can (optionally) be identified by a unique case ID

The data for Supervised Learning

* Beer_data -> Beer_training_data, Beer_testing_data -- create training set CREATE TABLE Beer_training_data AS SELECT * FROM Beer_data WHERE ORA HASH (IDIndex, 99, 5) < 65;</pre>

-- create testing set
CREATE TABLE Beer_testing_data
AS SELECT * FROM Beer_data
WHERE ORA_HASH(IDIndex, 99, 5) >= 65;

A quick look to APEX (demo)

- * Beer_Train
- * Beer_Training_Data
- * Beer_Testing_Dat

Oracle PL/SQL Packages for Data Mining

* DBMS_PREDICTIVE_ANALYTICS

- * Routines for performing predictive analytics
- * DBMS_DATA_MINING_TRANSFORMING
 - * Routines for *transforming the data* for mining models
- * DBMS_DATA_MINING
 - * Routines for creating and managing mining models

DBMS_PREDICTIVE_ANALYTICS

- routines that perform an automated data mining known as predictive analytics
- * no need to be aware of model building or scoring
 - * All mining activities are handled internally by the procedure.

DBMS_PREDICTIVE_ANALYTICS

* EXPLAIN

- * ranks attributes in order of influence in explaining the target column
- * PREDICT
 - * predicts the value of a target column based on values in the input data
- * PROFILE
 - * generates rules that describe the cases from the input data

DBMS PREDICTIVE ANALYTICS

SQL> describe dbms_predictive_analytics

PROCEDURE EXPLAIN			
Argument Name	Type	In/Out	Default?
DATA_TABLE_NAME	VARCHAR2	IN	~
EXPLAIN_COLUMN_NAME	VARCHAR2	IN	
RESULT_TABLE_NAME	VARCHAR2	IN	
DATA_SCHEMA_NAME	VARCHAR2	IN	DEFAULT
PROCEDURE PREDICT			
Argument Name	Type	In/Out	Default?
ACCURACY	NUMBER	OUT	
DATA_TABLE_NAME	VARCHAR2	IN	
CASE_ID_COLUMN_NAME	VARCHAR2	IN	
TARGET_COLUMN_NAME	VARCHAR2	IN	
RESULT_TABLE_NAME	VARCHAR2	IN	
DATA_SCHEMA_NAME	VARCHAR2	IN	DEFAULT
PROCEDURE PROFILE			
Argument Name	Type	In/Out	Default?
DATA_TABLE_NAME	VARCHAR2	IN	
TARGET_COLUMN_NAME	VARCHAR2	IN	
RESULT_TABLE_NAME	VARCHAR2	IN	
DATA_SCHEMA_NAME	VARCHAR2	IN	DEFAULT

BEGIN

```
DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
    data_table_name => 'Beer_training_data',
    explain_column_name => 'overall',
    result_table_name => 'beer_explain');
END;
```


EXPLAIN

6	🛃 🗶 📭 🔍 So	ort Filter:			 Actions.
	ATTRIBUTE_NAME	ATTRIBUTE_SUBNAME	& EXPLANATORY_VALUE	& RANK	
1	TASTE	(null)	0,1369959018036639046488620435087567350302	1	
2	PALATE	(null)	0,1033038106866505612466700086317885929612	2	
3	AROMA	(null)	0,08791526829406451506523536256475774282	3	
4	APPEARANCE	(null)	0,0597994415746425094084278968669637963851	4	
5	IDINDEX	(null)	0,0514743174015554311246566591668580953978	5	
6	STYLE	(null)	0,0487182850810693894469596131763997020818	6	
7	BEERID	(null)	0,0447651730492723089511095141894142199002	7	
8	ABV	(null)	0,0282744648145592050251039059166762689924	8	
9	BREWERID	(null)	0,0273217823948269630249887964806943058078	9	
10	TEXT	(null)	0	10	
11	PROFILENAME	(null)	0	10	
12	NAME	(null)	0	10	
13	GENDER	(null)	0	10	
14	AGEINSECONDS	(null)	0	10	
15	BIRTHDAYRAW	(null)	0	10	
16	TIMEUNIX	(null)	0	10	
17	TIMESTRUCT	(null)	0	10	
18	BIRTHDAYUNIX	(null)	0	10	

/

Accuracy: .24618951 (a measure of improved maximum average accuracy versus a naive model's maximum average accuracy)

PREDICT

IDINDEX	PREDICTION	PROBABILITY
0	2	.42799808967620911
1	3	.53057676003601528
2	3	.51728627054274079
3	4	.45808326842381863
4	4	.47447188708319082
5	4	.64845475978174982
6	4	.65424415909731026
7	3	.45898266110126107
9	4	.51363296269020753

How did it predict?

- * Total no of rows: 37 303
- * Correct predictions: 25 421
- * Not correct predictions: 11 882

- * creates a Decision Tree model
 - * to identify the characteristics of the *attributes* that predict the target
 - * creates rules (expressed in XML as if-then-else statements) that describe the *decisions* that affect the prediction
- * PROFILE returns XML that is derived from the model details generated by the algorithm.

BEGIN

PROFILE

BEER_PROFILE_RESULT

PROFILE_ID	RECORD_COUNT	DESCRIPTION
1	50	[SYS.XMLTYPE]
2	100	[SYS.XMLTYPE]
3	34	[SYS.XMLTYPE]
4	462	[SYS.XMLTYPE]
5	566	[SYS.XMLTYPE]
6	279	[SYS.XMLTYPE]
7	2445	[SYS.XMLTYPE]
8	1624	[SYS.XMLTYPE]
9	1522	[SYS.XMLTYPE]
10	653	[SYS.XMLTYPE]
11	8024	[SYS.XMLTYPE]
12	3557	[SYS.XMLTYPE]
24		

Now to the process itself

Preparing the data

* This is usually the most difficult and time consuming part of machine learning...80/20...

Attributes

* Data attributes

* columns in the data set used to build, test, or score a model

* Model attributes

- * the data representations used internally by the model
- * The target attribute
 - in supervised learning contains the known values of output and to which the predictions are compared to
- * Identify the columns (features) to include in the case table

Understanding the data

- * go through the data and each attribute and feature
- * datatype (numeric, category, ...)
 - * note Palate/aroma/... is not numeric, it is categorial!
- * type, expectation, missing, outliers, comment
- * linear plot to find data to be removed (outlier)
- * a correlation plot to show the correlation
- * remove nulls on very significant features (somehow)
- * transform features

*

Understanding the data

* A demo with APEX or Oracle Machine learning (ATP)

Understanding the data

- * The Target is **OVERALL**
- * o value in Overall (1-5?)?
 - * Remove?
 - * Accept (0-5)?
 - *

A Feature/Attribute

- * Is a Feature/Attribute relevant?
- * Is a Feature/Attribute independent? (the area vs no of rooms)
- * Is a Feature/Attribute simple? (how to compare? GPS coordinates not good, Convert for intance distance from water)

Let's talk about some attributes in our example

- * APPEARANCE,
- * AROMA,
- * PALATE,
- * TASTE,
- * BEERID,
- * TEXT,
- * TIMESTRUCT,
- * TIMEUNIX,
- * AGEINSECONDS,
- * BIRTHDAYRAW,
- * BIRTHDAYUNIX,
- * PROFILENAME,
- * NAME,
- * GENDER

Missing Data

- * Missing Values or Sparse Data?
 - * Missing values
 - * some attribute values are unknown
 - * missing values in columns with a simple data type
 - * Sparse data
 - values that are assumed to be known, although they are not represented in the data
 - * missing values in nested columns

Transforming the data

- * Creating Nested Columns
 - * if you want to include transactional data etc.
- * Converting Column Data Types
 - * Age -> Child, Adult
- Business and Domain-Sensitive Transformations
 - * Date of birth -> age
- * Text Transformation (a text column must be in a table, not a view)
- * ...
- * Write SQL expressions for any transformations not handled by ADP

DBMS_DATA_MINING_TRANSFORM

DBMS_DATA_MINING_TRANSFORM

Understand the routines of DBMS_DATA_MINING_TRANSFORM package.

The DBMS_DATA_MINING_TRANSFORM package contains routines that perform data transformations such as binning, normalization, and outlier treatment. The package includes routines for:

- Specifying transformations in a format that can be embedded in a mining model.
- Specifying transformations as relational views (external to mining model objects).
- Specifying distinct properties for columns in the build data. For example, you can specify that the column must be interpreted as unstructured text, or that the column must be excluded from Automatic Data Preparation.

Normalization

- * Normalization
 - * A technique for reducing the range of numerical data
 - * (Model View Details: DM\$VN for Normalization)

Outlier Treatment

- * A value is considered an *outlier* if it deviates *significantly* from most other values in the column
- * Outliers can have a skewing effect on the data
- Outliers can interfere with the effectiveness of transformations such as normalization or binning.
- * problematic or perfectly valid data?

Creating a Model

DBMS_DATA_MINING

Understand the routines of DBMS_DATA_MINING package.

The DBMS_DATA_MINING package contains routines for creating mining models, for performing operations on mining models, and for querying mining models. The package includes routines for:

- Creating, dropping, and performing other DDL operations on mining models
- Obtaining detailed information about model attributes, rules, and other information internal to the model (model details)
- Computing test metrics for classification models
- Specifying costs for classification models
- Exporting and importing models
- Building models using Oracle's native algorithms as well as algorithms written in R

Creating a Model

- * Choose the mining function
- * Choose the algorithm
- * Create and populate the settings table

Choose the Model (Mining Function)

- * Supervised Learning
 - * Regression
 - * Classification
 - * Anomaly Detection
 - * (Feature Selection)
- Unsupervised Learning
 - * Clustering
 - * Anomaly Detection
 - * Association
 - * (Feature Extraction)

Choosing the Algorithm

- * Decision Tree (classification)
- * Naive Bayes (classification)
- * Generalized Linear Models (regression and classification)
- * Support Vector Machines (classification, regression, and anomaly detection)
- * k-Means (clustering)
- * O-Cluster (clustering)
- * Minimum Description Length (for calculating attribute importance)
- Apriori (for calculating association rules)
- * Non-Negative Matrix Factorization, NMF (feature extraction)
- * ... Each version brings more algorithms to choose from...

Table 5-3 Data Mining Algorithms			
ALGO_NAME Value	Algorithm	Default?	Mining Model Function
ALGO_AI_MDL	Minimum Description Length		attribute importance
ALGO_APRIORI_ASSOCIATION_R ULES	Apriori	<u></u> *	association
ALGO_CUR_DECOMPOSITION	CUR Decomposition		Attribute Importance
ALGO_DECISION_TREE	Decision Tree		classification
ALGO_EXPECTATION_MAXIMIZAT	Expectation Maximization		
ALGO_EXPLICIT_SEMANTIC_ANA LYS	Explicit Semantic Analysis	A	feature extraction classification
ALGO_EXPONENTIAL_SMOOTHING	Exponential Smoothing		time series
ALGO_EXTENSIBLE_LANG	Language used for extensible algorithm		All mining functions are supported
ALGO_GENERALIZED_LINEAR_MO DEL	Generalized Linear Model	<u> </u>	classification and regression
ALGO_KMEANS	k-Means	yes	clustering
ALGO_NAIVE_BAYES	Naive Bayes	yes	classification
ALGO_NEURAL_NETWORK	Neural Network		classification
ALGO_NONNEGATIVE_MATRIX_FA	Non-Negative Matrix Factorization	yes	feature extraction
ALGO_O_CLUSTER	O-Cluster		clustering
ALGO_RANDOM_FOREST	Random Forest		classification
ALGO_SINGULAR_VALUE_DECOMP	Singular Value Decomposition (can also be used for Principal Component Analysis)		feature extraction
ALGO_SUPPORT_VECTOR_MACHIN	Support Vector Machine	yes	default regression algorithm regression, classification, and
			anomaly detection (classification with no target)

Create a model

* CREATE_MODEL procedure in the DBMS_DATA_MINING package

PROCEDURE CREATE_MODEL (

model_name	IN VARCHAR2,
mining_function	IN VARCHAR2,
data_table_name	IN VARCHAR2,
case_id_column_name	IN VARCHAR2,
target_column_name	IN VARCHAR2 DEFAULT NULL,
<pre>settings_table_name</pre>	IN VARCHAR2 DEFAULT NULL,
data_schema_name	IN VARCHAR2 DEFAULT NULL,
settings_schema_name	IN VARCHAR2 DEFAULT NULL,
xform_list	IN TRANSFORM_LIST DEFAULT NULL)

;

A Settings table

```
CREATE TABLE Beer_settings_DT (
setting_name VARCHAR2(30),
setting_value VARCHAR2(4000));
```

```
BEGIN
INSERT INTO Beer_settings_DT VALUES
(dbms_data_mining.algo_name, dbms_data_mining.algo_decision_tree);
...
END;
/
```


Other possible settings

- * Cost table and matrix (Decision Tree model)
- * Prior Probabilities (Naive Bayes)
- * Class Weights (Logistic Regression or Support Vector Machine)

Miracle Finland Oy

*

Create a new model

BEGIN

```
DBMS_DATA_MINING.CREATE_MODEL(
    model_name => 'Beer_DT',
    mining_function => dbms_data_mining.classification,
    data_table_name => 'Beer_training_data',
    case_id_column_name => 'IDIndex',
    target_column_name => 'Overall',
    settings_table_name => 'Beer_settings_DT');
END;
```


Model Signature

* The set of data attributes that are used to build a model

Model Signature

SELECT attribute_name, attribute_type
FROM TABLE(DBMS_DATA_MINING.GET_MODEL_SIGNATURE('BEER_DT'))
ORDER BY attribute_name;

	ATTRIBUTE_NAME	ATTRIBUTE_TYPE
1	ABV	NUMBER
2	BREWERID	NUMBER
3	STYLE	VARCHAR2

Testing and Evaluating the model

- * Test: the model with new data (known input, known output)
- * Evaluation: depends on the chosen metrics

In our task we have chosen that only accuracy is important (this is a simple demo)

Evaluation

- * **Demo** with APEX or ATP
 - * (Confusion matrices, Beer model comparison, Beer evaluation of models)
- * What algorithm is the best?

Evaluation

- * In our simple example none of the models was very good but Decision Tree was a little bit better than others
- * We are now happy with our model and ready to deploy it

Scoring and Deployment

- * Deployment is implementing the models in the target environment
- * Deployment
 - Moving a model from the database where it was built to the database where it will be used (export/import)
 - * With scoring data either for real-time or batch results
 - Extracting model details to produce reports (clustering rules, decision tree rules, ...)

Apply the Model

BEGIN

```
DBMS_DATA_MINING.APPLY (
model_name => 'beer_DT',
data_table_name => 'beer_test',
case_id_column_name => 'idindex',
result_table_name => 'beer_result_table_DT');
```


END;

	BEER_RESULT_TABLE_DT								
Indexes	Model	Constraints	Grants	Statistics	UI Defaults	Triggers	Dependencies	SQL	REST
t Rows	Insert Row								

IDINDEX	PREDICTION	PROBABILITY	COST	
IDINDEX	FREDICTION	PROBABILITY		
13803	4	.61222339304531082	.38777660695468918	
13803	5 .25594192717480391		.74405807282519609	
13803	3 .11017445264020606		.88982554735979391	
13803	2	.01803067556492214	.98196932443507789 .99637044842524292	
13803	1	.0036295515747570544		
L3803	0	0	1	
13960	4 .61222339304531082		.38777660695468918	
13960	5 .25594192717480391		.74405807282519609	
13960	3 .11017445264020606		.88982554735979391	

Real-time scoring a prediction, single record scoring

What is the probability for beer 43548 to get overall 5?

```
SELECT PREDICTION_PROBABILITY(Beer_DT, 5 USING *) beer_overall_prob
FROM beer_test
WHERE idindex = 43658;
1.5087463556851313E-001
```

SELECT PREDICTION_PROBABILITY(Beer_DT, 5 USING STYLE) beer_overall_prob
FROM beer_test
WHERE idindex = 43658;
2.4140018157974377E-001

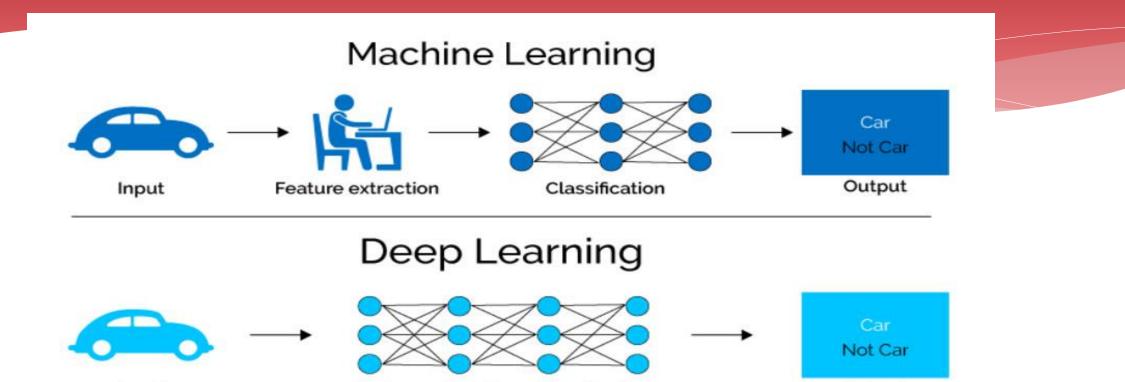
USING: Predictors and/or Expressions (only if

Real-time scoring a prediction, batch scoring

What are the brewers that I should contact (making most of the overall 5 beers)? SELECT brewerid, count(*) as cnt FROM beer_test

WHERE PREDICTION (Beer_DT USING *) = 5

group by brewerid


order by cnt desc;

The deep learning version

What is deep learning?

Feature extraction + Classification

https://towardsdatascience.com/why-deep-learning-isneeded-over-traditional-machine-learning-1b6a99177063

Input

Copyright © Miracle Finland Oy

Output

Predicting Beer Ratings with Deep Learning

* A quick demo in ATP

Conclusion

- * Oracle PL/SQL Packages for Data Mining
 - * DBMS_PREDICTIVE_ANALYTICS
 - * Routines for performing predictive analytics
 - * DBMS_DATA_MINING_TRANSFORMING
 - * Routines for *transforming the data* for mining models
 - * DBMS_DATA_MINING
 - * Routines for creating and managing mining models

Conclusion

The Process

- 1. Defining the Task, understanding the Task
- 2. Collecting the data, understanding the data
- 3. Attributes (Features, Columns)
- **4.** Preparing the data/Transforming the data
- 5. Creating a Model
 - 1. Model (Function)
 - 2. Algorithm
- 6. Evaluate the models
- 7. Scoring and Deployment

THANK YOU!

QUESTIONS?

Email: heli@miracleoy.fi Twitter: @HeliFromFinland Blog: Helifromfinland.com

