
PBarel@Qualogy.com

http://blog.bar-solutions.com

About me…

Plugins for PL/SQL Developer
http://plugins.bar-solutions.com

http://blog.bar-solutions.com

http://allthingsoracle.com

http://www.otechmag.com

www.red-gate.com/
simple-talk/author/
patrick-barel/

bar-solutions.com/
otechmagazine.php

'97 '99 '13 '15 '16 '18 '19'98 '10 '11 '12 '14 '17'00 '02 '04 '06 '08'01 '03 '05 '07 '09 '20 '21

@patch72

Patrick Barel

3029156

40338721Patrick.Barel@GMail.com

patrick@bar-solutions.com

Patrick.Barel@GMail.com

PBarel@Qualogy.com

Contact me…

3 membership tiers

Connect: @oracleaceFacebook.com/oracleacesoracle-ace_ww@oracle.com

500+ technical experts

helping peers globally

The Oracle ACE Program recognizes and
rewards community members for their
technical contributions in the Oracle
community

Nominate
yourself or someone you know:

acenomination.oracle.com
For more details on Oracle ACE Program:
bit.ly/OracleACEProgram

oracle.com/cloud/free

New Free Tier Always Free

Oracle Cloud Infrastructure

Services you can use for unlimited time

30-Day Free Trial
Free credits you can use for more services

+

Increase your
programming confidence
by using Unit Tests
Patrick Barel, Qualogy October 14, 2021

October 14, 2021Increase your programming confidence by using Unit Tests7

October 14, 2021Increase your programming confidence by using Unit Tests8

I don’t write
unittests because
it takes too much

time to write
them.

October 14, 2021Increase your programming confidence by using Unit Tests9

Then, how do
you test your
code?

October 14, 2021Increase your programming confidence by using Unit Tests10

I’ll start the
application, login,

navigate to the right
screen

and then perform the
necessary actions?

October 14, 2021Increase your programming confidence by using Unit Tests11

Gee, how long
does that take?

October 14, 2021Increase your programming confidence by using Unit Tests12

As a developer

I need a function

That returns the characters from a given string between a given

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive

cde

October 14, 2021Increase your programming confidence by using Unit Tests13

As a developer

I need a function

That returns the characters from a given string between a given

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive

cde

October 14, 2021Increase your programming confidence by using Unit Tests14

As a developer

I need a function

That returns the characters from a given string between a given

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive

cde

function

October 14, 2021Increase your programming confidence by using Unit Tests15

As a developer

I need a function

That returns the characters from a given string between a given

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive

cde

function betwnstr

October 14, 2021Increase your programming confidence by using Unit Tests16

As a developer

I need a function

That returns the characters from a given string between a given

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive

cde

function betwnstr(

) return varchar2

October 14, 2021Increase your programming confidence by using Unit Tests17

As a developer

I need a function

That returns the characters from a given string between a given

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive

cde

function betwnstr(string_in in varchar2
,start_in in integer
,end_in in integer) return varchar2

October 14, 2021Increase your programming confidence by using Unit Tests18

As a developer

I need a function

That returns the characters from a given string between a given

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive

cde

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 begin
5 return substr();
6 end betwnstr;
7 /

October 14, 2021Increase your programming confidence by using Unit Tests19

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 begin
5 return substr();
6 end betwnstr;
7 /

October 14, 2021Increase your programming confidence by using Unit Tests20

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 begin
5 return substr(string_in, start_in, end_in);
6 end betwnstr;
7 /

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 5)) cdefg

October 14, 2021Increase your programming confidence by using Unit Tests21

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 begin
5 return substr(string_in, start_in, end_in - start_in);
6 end betwnstr;
7 /

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 5)) cd

October 14, 2021Increase your programming confidence by using Unit Tests22

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 begin
5 return substr(string_in, start_in, end_in - start_in - 1);
6 end betwnstr;
7 /

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 5)) c

October 14, 2021Increase your programming confidence by using Unit Tests23

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 begin
5 return substr(string_in, start_in, end_in - start_in + 1);
6 end betwnstr;
7 /

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 5))

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 0, 2))

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 100))

cde

abc

cdefgh

October 14, 2021Increase your programming confidence by using Unit Tests24

cde
abc

cdefgh

fgh

PL/SQL procedure successfully completed.

SQL> begin
2 dbms_output.put_line(betwnstr('abcdefgh', 3, 5));
3 dbms_output.put_line(betwnstr('abcdefgh',0,2));
4 dbms_output.put_line(betwnstr('abcdefgh',null,5));
5 dbms_output.put_line(betwnstr('abcdefgh',3,null));
6 dbms_output.put_line(betwnstr('abcdefgh',3,100));
7 dbms_output.put_line(betwnstr('abcdefgh',-3,-5));
8 dbms_output.put_line(betwnstr('abcdefgh',-3,0));
9 end;
10 /

October 14, 2021Increase your programming confidence by using Unit Tests25

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 l_start integer := start_in;
5 begin
6 -- 0 should be start of string so change it to 1
7 if l_start = 0 then
8 l_start := 1;
9 end if;
10
11 return substr(string_in, l_start, end_in - l_start + 1);
12 end betwnstr;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests26

cde
ab

cdefgh

fgh

PL/SQL procedure successfully completed.

SQL> begin
2 dbms_output.put_line(betwnstr('abcdefgh', 3, 5));
3 dbms_output.put_line(betwnstr('abcdefgh',0,2));
4 dbms_output.put_line(betwnstr('abcdefgh',null,5));
5 dbms_output.put_line(betwnstr('abcdefgh',3,null));
6 dbms_output.put_line(betwnstr('abcdefgh',3,100));
7 dbms_output.put_line(betwnstr('abcdefgh',-3,-5));
8 dbms_output.put_line(betwnstr('abcdefgh',-3,0));
9 end;
10 /

October 14, 2021Increase your programming confidence by using Unit Tests27

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 l_start integer := start_in;
5 begin
6 -- 0 should be start of string so change it to 1
7 if l_start = 0 then
8 l_start := 1;
9 end if;
10 if l_start is null then
11 l_start := 1;
12 end if;
13 return substr(string_in, l_start, end_in - l_start + 1);
14 end betwnstr;
15 /

October 14, 2021Increase your programming confidence by using Unit Tests28

SQL> begin
2 dbms_output.put_line(betwnstr('abcdefgh', 3, 5));
3 dbms_output.put_line(betwnstr('abcdefgh',0,2));
4 dbms_output.put_line(betwnstr('abcdefgh',null,5));
5 dbms_output.put_line(betwnstr('abcdefgh',3,null));
6 dbms_output.put_line(betwnstr('abcdefgh',3,100));
7 dbms_output.put_line(betwnstr('abcdefgh',-3,-5));
8 dbms_output.put_line(betwnstr('abcdefgh',-3,0));
9 end;
10 /

cde
ab
abcde

cdefgh

fgh

PL/SQL procedure successfully completed.

October 14, 2021Increase your programming confidence by using Unit Tests29

October 14, 2021Increase your programming confidence by using Unit Tests30

October 14, 2021Increase your programming confidence by using Unit Tests31

Unit Testing

Setup

October 14, 2021Increase your programming confidence by using Unit Tests32

Unit Testing

 Build tables

 Enter records

 Run Code

Setup

SQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';

12 end;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests33

Unit Testing

Setup

RunSQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';

12 end;
13 /

SQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';

12 end;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests34

SQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';

12 end;
13 /

Unit Testing

 Run the actual code

 Record the outcome

Setup

Run

SQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';
6 test_this := betwnstr('abcdefgh',3,5);

12 end;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests35

Unit Testing

Setup

Validate

Run

SQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';
6 test_this := betwnstr('abcdefgh',3,5);

12 end;
13 /

SQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';
6 test_this := betwnstr('abcdefgh',3,5);

12 end;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests36

Unit Testing

 Do the validation of the results

Setup

Validate

Run

SQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';
6 test_this := betwnstr('abcdefgh',3,5);

12 end;
13 /

SQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';
6 test_this := betwnstr('abcdefgh',3,5);
7 if test_this = against_this then
8 dbms_output.put_line('OK');
9 else
10 dbms_output.put_line('NOT OK');
11 end if;
12 end;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests37

Unit Testing

Setup

Validate

Run

TeardownSQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';
6 test_this := betwnstr('abcdefgh',3,5);
7 if test_this = against_this then
8 dbms_output.put_line('OK');
9 else
10 dbms_output.put_line('NOT OK');
11 end if;
12 end;
13 /

SQL> declare
2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';
6 test_this := betwnstr('abcdefgh',3,5);
7 if test_this = against_this then
8 dbms_output.put_line('OK');
9 else
10 dbms_output.put_line('NOT OK');
11 end if;
12 end;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests38

Unit Testing

 Teardown everything you setup

Setup

Validate

Run

Teardown
SQL> declare

2 test_this varchar2(100);
3 against_this varchar2(100);
4 begin
5 against_this := 'cde';
6 test_this := betwnstr('abcdefgh',3,5);
7 if test_this = against_this then
8 dbms_output.put_line('OK');
9 else
10 dbms_output.put_line('NOT OK');
11 end if;
12 end;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests39

October 14, 2021Increase your programming confidence by using Unit Tests40

October 14, 2021Increase your programming confidence by using Unit Tests41

October 14, 2021Increase your programming confidence by using Unit Tests42

October 14, 2021Increase your programming confidence by using Unit Tests43

October 14, 2021Increase your programming confidence by using Unit Tests44

October 14, 2021Increase your programming confidence by using Unit Tests45

October 14, 2021Increase your programming confidence by using Unit Tests46

October 14, 2021Increase your programming confidence by using Unit Tests47

October 14, 2021Increase your programming confidence by using Unit Tests48

October 14, 2021Increase your programming confidence by using Unit Tests49

October 14, 2021Increase your programming confidence by using Unit Tests50

October 14, 2021Increase your programming confidence by using Unit Tests51

October 14, 2021Increase your programming confidence by using Unit Tests52

October 14, 2021Increase your programming confidence by using Unit Tests53

October 14, 2021Increase your programming confidence by using Unit Tests54

.
> FFFFFFF AA III L U U RRRRR EEEEEEE
> F A A I L U U R R E

> F A A I L U U R R E
> F A A I L U U R R E
> FFFF A A I L U U RRRRRR EEEE
> F AAAAAAAA I L U U R R E
> F A A I L U U R R E
> F A A I L U U R R E
> F A A III LLLLLLL UUU R R EEEEEEE
.
FAILURE: ".ut_betwnstr"
.
> Individual Test Case Results:
>
FAILURE - ut_betwnstr.UT_BETWNSTR: EQ "Typical valid usage"
Expected "cd" and
got "cde"

>
SUCCESS - ut_betwnstr.UT_BETWNSTR: EQ "Zero start" Expected
"ab" and got "ab"

October 14, 2021Increase your programming confidence by using Unit Tests55

.
> FFFFFFF AA III L U U RRRRR EEEEEEE
> F A A I L U U R R E

> F A A I L U U R R E
> F A A I L U U R R E
> FFFF A A I L U U RRRRRR EEEE
> F AAAAAAAA I L U U R R E
> F A A I L U U R R E
> F A A I L U U R R E
> F A A III LLLLLLL UUU R R EEEEEEE
.
FAILURE: ".ut_betwnstr"
.
> Individual Test Case Results:
>
FAILURE - ut_betwnstr.UT_BETWNSTR: EQ "Typical valid usage"
Expected "cd" and
got "cde"

>
SUCCESS - ut_betwnstr.UT_BETWNSTR: EQ "Zero start" Expected
"ab" and got "ab"

October 14, 2021Increase your programming confidence by using Unit Tests56

.
> SSSS U U CCC CCC EEEEEEE SSSS SSSS
> S S U U C C C C E S S S S

> S U U C C C C E S S
> S U U C C E S S
> SSSS U U C C EEEE SSSS SSSS
> S U U C C E S S
> S U U C C C C E S S
> S S U U C C C C E S S S S
> SSSS UUU CCC CCC EEEEEEE SSSS SSSS
.
SUCCESS: ".ut_betwnstr"
.
> Individual Test Case Results:
>
SUCCESS - ut_betwnstr.UT_BETWNSTR: EQ "Typical valid usage"
Expected "cde" and
got "cde"

>
SUCCESS - ut_betwnstr.UT_BETWNSTR: EQ "Zero start" Expected
"ab" and got "ab"

October 14, 2021Increase your programming confidence by using Unit Tests57

October 14, 2021Increase your programming confidence by using Unit Tests58

October 14, 2021Increase your programming confidence by using Unit Tests59

October 14, 2021Increase your programming confidence by using Unit Tests60

October 14, 2021Increase your programming confidence by using Unit Tests61

October 14, 2021Increase your programming confidence by using Unit Tests62

October 14, 2021Increase your programming confidence by using Unit Tests63

October 14, 2021Increase your programming confidence by using Unit Tests64

October 14, 2021Increase your programming confidence by using Unit Tests65

October 14, 2021Increase your programming confidence by using Unit Tests66

October 14, 2021Increase your programming confidence by using Unit Tests67

October 14, 2021Increase your programming confidence by using Unit Tests68

October 14, 2021Increase your programming confidence by using Unit Tests69

October 14, 2021Increase your programming confidence by using Unit Tests70

October 14, 2021Increase your programming confidence by using Unit Tests71

October 14, 2021Increase your programming confidence by using Unit Tests72

October 14, 2021Increase your programming confidence by using Unit Tests73

October 14, 2021Increase your programming confidence by using Unit Tests74

October 14, 2021Increase your programming confidence by using Unit Tests75

October 14, 2021Increase your programming confidence by using Unit Tests76

October 14, 2021Increase your programming confidence by using Unit Tests77

October 14, 2021Increase your programming confidence by using Unit Tests78

October 14, 2021Increase your programming confidence by using Unit Tests79

October 14, 2021Increase your programming confidence by using Unit Tests80

October 14, 2021Increase your programming confidence by using Unit Tests81

October 14, 2021Increase your programming confidence by using Unit Tests82

October 14, 2021Increase your programming confidence by using Unit Tests83

October 14, 2021Increase your programming confidence by using Unit Tests84

October 14, 2021Increase your programming confidence by using Unit Tests85

October 14, 2021Increase your programming confidence by using Unit Tests86

October 14, 2021Increase your programming confidence by using Unit Tests87

October 14, 2021Increase your programming confidence by using Unit Tests88

October 14, 2021Increase your programming confidence by using Unit Tests89

October 14, 2021Increase your programming confidence by using Unit Tests90

October 14, 2021Increase your programming confidence by using Unit Tests91

October 14, 2021Increase your programming confidence by using Unit Tests92

October 14, 2021Increase your programming confidence by using Unit Tests93

October 14, 2021Increase your programming confidence by using Unit Tests94

October 14, 2021Increase your programming confidence by using Unit Tests95

October 14, 2021Increase your programming confidence by using Unit Tests96

October 14, 2021Increase your programming confidence by using Unit Tests97

October 14, 2021Increase your programming confidence by using Unit Tests98

October 14, 2021Increase your programming confidence by using Unit Tests99

October 14, 2021Increase your programming confidence by using Unit Tests100

October 14, 2021Increase your programming confidence by using Unit Tests101

October 14, 2021Increase your programming confidence by using Unit Tests102

October 14, 2021Increase your programming confidence by using Unit Tests103

October 14, 2021Increase your programming confidence by using Unit Tests104

October 14, 2021Increase your programming confidence by using Unit Tests105

October 14, 2021Increase your programming confidence by using Unit Tests106

October 14, 2021Increase your programming confidence by using Unit Tests107

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 begin
5 return substr(string_in, start_in, end_in - start_in + 1);
6 end betwnstr;
7 /

October 14, 2021Increase your programming confidence by using Unit Tests108

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 l_start integer := start_in;
5 begin
6 -- 0 should be start of string so change it to 1
7 if l_start = 0 then
8 l_start := 1;
9 end if;
10
11 return substr(string_in, l_start, end_in - l_start + 1);
12 end betwnstr;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests109

October 14, 2021Increase your programming confidence by using Unit Tests110

October 14, 2021Increase your programming confidence by using Unit Tests111

October 14, 2021Increase your programming confidence by using Unit Tests112

October 14, 2021Increase your programming confidence by using Unit Tests113

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 l_start integer := start_in;
5 begin
6 -- 0 should be start of string so change it to 1
7 if l_start = 0 then
8 l_start := 1;
9 end if;
10
11 return substr(string_in, l_start, end_in - l_start + 1);
12 end betwnstr;
13 /

October 14, 2021Increase your programming confidence by using Unit Tests114

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 l_start integer := start_in;
5 begin
6 -- 0 should be start of string so change it to 1
7 if l_start = 0 then
8 l_start := 1;
9 end if;
10 if l_start is null then
11 l_start := 1;
12 end if;
13 return substr(string_in, l_start, end_in - l_start + 1);
14 end betwnstr;
15 /

October 14, 2021Increase your programming confidence by using Unit Tests115

October 14, 2021Increase your programming confidence by using Unit Tests116

October 14, 2021Increase your programming confidence by using Unit Tests117

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 l_start integer := start_in;
5 begin
6 -- 0 should be start of string so change it to 1
7 if l_start = 0 then
8 l_start := 1;
9 end if;
10 if l_start is null then
11 l_start := 1;
12 end if;
13 return substr(string_in, l_start, end_in - l_start + 1);
14 end betwnstr;
15 /

October 14, 2021Increase your programming confidence by using Unit Tests118

SQL> create or replace function betwnstr(string_in in varchar2
2 ,start_in in integer
3 ,end_in in integer) return varchar2 is
4 l_string varchar2(32767) := string_in;
5 l_start integer := start_in;
6 l_end integer := end_in;
7 l_returnvalue varchar2(32767);
8 begin
9 if (l_start < 1)
10 or (l_start is null) then
11 l_start := 1;
12 end if;
13
14 if (l_end is null) then
15 l_end := length(l_string);
16 end if;
17
18 l_returnvalue := substr(l_string, l_start, (l_end - l_start) + 1);
19
20 return l_returnvalue;
21 end betwnstr;
22 /

October 14, 2021Increase your programming confidence by using Unit Tests119

October 14, 2021Increase your programming confidence by using Unit Tests120

October 14, 2021Increase your programming confidence by using Unit Tests121

October 14, 2021Increase your programming confidence by using Unit Tests122

October 14, 2021Increase your programming confidence by using Unit Tests123

October 14, 2021Increase your programming confidence by using Unit Tests124

October 14, 2021Increase your programming confidence by using Unit Tests125

October 14, 2021Increase your programming confidence by using Unit Tests126

October 14, 2021Increase your programming confidence by using Unit Tests127

October 14, 2021Increase your programming confidence by using Unit Tests128

October 14, 2021Increase your programming confidence by using Unit Tests129

October 14, 2021Increase your programming confidence by using Unit Tests130

October 14, 2021Increase your programming confidence by using Unit Tests131

October 14, 2021Increase your programming confidence by using Unit Tests132

October 14, 2021Increase your programming confidence by using Unit Tests133

October 14, 2021Increase your programming confidence by using Unit Tests134

October 14, 2021Increase your programming confidence by using Unit Tests135

October 14, 2021Increase your programming confidence by using Unit Tests136

October 14, 2021Increase your programming confidence by using Unit Tests137

October 14, 2021Increase your programming confidence by using Unit Tests138

October 14, 2021Increase your programming confidence by using Unit Tests139

October 14, 2021Increase your programming confidence by using Unit Tests140

October 14, 2021Increase your programming confidence by using Unit Tests141

October 14, 2021Increase your programming confidence by using Unit Tests142

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli

Available features:

cart: Database Cart Batch Tasks

dba: Basic Batch DBA Tasks

format: Utility Import Task

migration: Database Migration Tasks

reports: Basic Batch Reporting Tasks

unittest: Unit Testing Batch Tasks

utility: Utility Import Task

October 14, 2021Increase your programming confidence by using Unit Tests143

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest

unittest ?

unittest -run ?

unittest -exp ?

unittest -imp ?

Command Completed.

October 14, 2021Increase your programming confidence by using Unit Tests144

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run ?> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run ?

unittest -run -test (-id <id>|-name <name>} -repo <connection name>

-db <connection name> {-return <return id>} {-log <0,1,2,3>}

unittest -run -suite (-id <id>|-name <name>} -repo <connection name>

-db <connection name> {-return <return id>} {-log <0,1,2,3>}

October 14, 2021Increase your programming confidence by using Unit Tests145

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo"

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo"

Command Completed.

October 14, 2021Increase your programming confidence by using Unit Tests146

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3

a23124be-4f86-4d67-9219-edaabc8cc3b3

UT_SUCCESS

null

Command Completed.

October 14, 2021Increase your programming confidence by using Unit Tests147

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3

37212a19-2962-43bc-92fd-103421edf979

UT_ERROR

BETWNSTR failed: Test Implementation 7 failed: Expected: [null], Received: [fgh]

Command Completed.

October 14, 2021Increase your programming confidence by using Unit Tests148

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3 -return 1

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3 -return 1

1

UT_SUCCESS

null

Command Completed.

October 14, 2021Increase your programming confidence by using Unit Tests149

> sqlplus testdemo/testdemo@demo

SQL*Plus: Release 12.1.0.1.0 Production on Sun Jan 22 07:56:33 2017

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Last Successful login time: Sun Jan 22 2017 07:43:31 +01:00

Connected to:

Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production

With the Partitioning, OLAP, Advanced Analytics and Real Application Testing options

TESTDEMO@demo> create sequence unittest_seq start with 2 nocache

2 /

Sequence created.

TESTDEMO@demo>

October 14, 2021Increase your programming confidence by using Unit Tests150

@echo off

ECHO Retrieve the next UnitTestID

for /f %%i in ('sqlplus -s testdemo/testdemo@demo @getSequenceNextVal.sql') do @set

UnitTestID=%%i

ECHO Run the unittest using this ID

C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR" -

repo "testdemo @ demo" -db "testdemo @ demo" -log 3 -return %UnitTestID%

October 14, 2021Increase your programming confidence by using Unit Tests151

@echo off

ECHO Retrieve the next UnitTestID

for /f %%i in ('sqlplus -s testdemo/testdemo@demo @getSequenceNextVal.sql') do @set

UnitTestID=%%i

ECHO Run the unittest using this ID

C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR" -

repo "testdemo @ demo" -db "testdemo @ demo" -log 3 -return %UnitTestID%

> test

Retrieve the next UnitTestID

Run the unittest using this ID

2

UT_SUCCESS

null

Command Completed.

October 14, 2021Increase your programming confidence by using Unit Tests152

October 14, 2021Increase your programming confidence by using Unit Tests153

October 14, 2021Increase your programming confidence by using Unit Tests154

October 14, 2021Increase your programming confidence by using Unit Tests155

October 14, 2021Increase your programming confidence by using Unit Tests156

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run ?> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run ?

unittest -run -test (-id <id>|-name <name>} -repo <connection name>

-db <connection name> {-return <return id>} {-log <0,1,2,3>}

unittest -run -suite (-id <id>|-name <name>} -repo <connection name>

-db <connection name> {-return <return id>} {-log <0,1,2,3>}

October 14, 2021Increase your programming confidence by using Unit Tests157

@echo off

ECHO Retrieve the next UnitTestID

for /f %%i in ('sqlplus -s testdemo/testdemo@demo @getSequenceNextVal.sql') do @set

UnitTestID=%%i

ECHO Run the testsuite using this ID

C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -suite -name "Suite1" -repo

"testdemo @ demo" -db "testdemo @ demo" -log 3 -return %UnitTestID%

ECHO Create the XML file with the results

sqlplus -s -l testdemo/testdemo@demo @ut##dumpxml.sql %UnitTestID%

October 14, 2021Increase your programming confidence by using Unit Tests158

@echo off

ECHO Retrieve the next UnitTestID

for /f %%i in ('sqlplus -s testdemo/testdemo@demo @getSequenceNextVal.sql') do @set

UnitTestID=%%i

ECHO Run the testsuite using this ID

C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -suite -name "Suite1" -repo

"testdemo @ demo" -db "testdemo @ demo" -log 3 -return %UnitTestID%

ECHO Create the XML file with the results

sqlplus -s -l testdemo/testdemo@demo @ut##dumpxml.sql %UnitTestID%

> suite

Retrieve the next UnitTestID

Run the testsuite using this ID

7

UT_ERROR

Suite1 failed: FACT failed: Test Implementation 7 failed: Expected: [839], Received:

[5040]

Command Completed.

Create the XML file with the results

old 3: c_suite constant varchar2(40) := '&1';
October 14, 2021Increase your programming confidence by using Unit Tests159

October 14, 2021Increase your programming confidence by using Unit Tests160

October 14, 2021Increase your programming confidence by using Unit Tests161

October 14, 2021Increase your programming confidence by using Unit Tests162

October 14, 2021Increase your programming confidence by using Unit Tests163

utPL/SQL v3

 Completely new version

 Implementation is different from utPL/SQL

 Test converter available

 Uses annotation

□ Still have to write your own code, but less

October 14, 2021Increase your programming confidence by using Unit Tests164

October 14, 2021Increase your programming confidence by using Unit Tests165

create or replace package test_betwnstr is
-- %suite (betwnstr)
-- Purpose : Unittesting betwnstr with utPL/SQL 3

-- %test(BETWNSTR Tests)
procedure test_betwnstr;

end test_betwnstr;
/
create or replace package body test_betwnstr is

c_teststring constant varchar2(8) := 'abcdefgh';
procedure test_betwnstr is
begin
ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => 5))

.to_equal('cde');
ut.expect(betwnstr(string_in => c_teststring, start_in => 0, end_in => 2))

.to_equal('ab');
ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => 9999))

.to_equal('cdefgh');
ut.expect(betwnstr(string_in => c_teststring, start_in => null, end_in => 5))

.to_equal('abcde');
ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => null))

.to_equal('cdefgh');
ut.expect(betwnstr(string_in => c_teststring, start_in => -3, end_in => -5))

.to_be_null;
ut.expect(betwnstr(string_in => c_teststring, start_in => -3, end_in => 0))

.to_be_null;
end;

end test_betwnstr;
/

October 14, 2021Increase your programming confidence by using Unit Tests166

Expectation

 More natural language

October 14, 2021Increase your programming confidence by using Unit Tests167

ut.expect(betwnstr(string_in => 'abcdefgh'

,start_in => 3

,end_in => 5)

).to_equal('cde');

utAssert.eq ('Typical valid usage'

,betwnstr(string_in => 'abcdefgh'

,start_in => 3

,end_in => 5)

,'cde');

Expectation

to_be_null
to_be_not_null
to_be_true
to_be_false
to_equal
to_be_like
to_match
to_be_between
to_be_greater_or_equal
to_be_greater_than
to_be_less_or_equal
to_be_less_than

not_to_be_null
not_to_be_not_null
not_to_be_true
not_to_be_false
not_to_equal
not_to_be_like
not_to_match
not_to_be_between
not_to_be_greater_or_equal
not_to_be_greater_than
not_to_be_less_or_equal
not_to_be_less_than

October 14, 2021Increase your programming confidence by using Unit Tests168

Expectation

October 14, 2021Increase your programming confidence by using Unit Tests169

Matcher

b
lo

b

b
o
o
le

a
n

c
lo

b

d
a
te

n
u
m

b
e
r

tim
e
s
ta

m
p

tim
e
s
ta

m
p

w
ith

tim

e
z
o
n
e

tim
e
s
ta

m
p

w
ith

 lo
c
a
l

tim
e
z
o
n
e

v
a
rc

h
a
r2

in
te

rv
a
l

y
e
a
r to

m

o
n
th

in
te

rv
a
l

d
a
y
 to

s
e
c
o
n
d

c
u
rs

o
r

n
e
s
te

d

ta
b
le

/
v
a
rra

y

o
b
je

c
t

be_not_null X X X X X X X X X X X X X X

be_null X X X X X X X X X X X X X X

be_false X

be_true X

be_greater_than X X X X X X X

be_greater_or_equal X X X X X X X

be_less_or_equal X X X X X X X

be_less_than X X X X X X X

be_between X X X X X X X X

equal X X X X X X X X X X X X X X

match X X

be_like X X

be_empty X X X X

have_count X X

Annotation

October 14, 2021Increase your programming confidence by using Unit Tests170

create or replace package test_betwnstr is

end test_betwnstr;

Annotation

October 14, 2021Increase your programming confidence by using Unit Tests171

create or replace package test_betwnstr is
-- %suite (betwnstr)

end test_betwnstr;

Annotation

October 14, 2021Increase your programming confidence by using Unit Tests172

create or replace package test_betwnstr is
-- %suite (betwnstr)

procedure test_betwnstr;
end test_betwnstr;

Annotation

October 14, 2021Increase your programming confidence by using Unit Tests173

create or replace package test_betwnstr is
-- %suite (betwnstr)
-- Purpose : Unittesting betwnstr with utPL/SQL 3

-- %test(BETWNSTR Tests)
procedure test_betwnstr;

end test_betwnstr;

create or replace package body test_betwnstr is
c_teststring constant varchar2(8) := 'abcdefgh';
procedure test_betwnstr is
begin

ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => 5))
.to_equal('cde');

ut.expect(betwnstr(string_in => c_teststring, start_in => 0, end_in => 2))
.to_equal('ab');

ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => 9999))
.to_equal('cdefgh');

ut.expect(betwnstr(string_in => c_teststring, start_in => null, end_in => 5))
.to_equal('abcde');

ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => null))
.to_equal('cdefgh');

ut.expect(betwnstr(string_in => c_teststring, start_in => -3, end_in => -5))
.to_be_null;

ut.expect(betwnstr(string_in => c_teststring, start_in => -3, end_in => 0))
.to_be_null;

end;
end test_betwnstr;

October 14, 2021Increase your programming confidence by using Unit Tests174

DEMO@demo>

October 14, 2021Increase your programming confidence by using Unit Tests175

DEMO@demo>

October 14, 2021Increase your programming confidence by using Unit Tests176

DEMO@demo> set serveroutput on size unlimitedDEMO@demo> set serveroutput on size unlimited

DEMO@demo>

DEMO@demo> set serveroutput on size unlimited

DEMO@demo>

October 14, 2021Increase your programming confidence by using Unit Tests177

DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

betwnstr

BETWNSTR Tests [.002 sec]

Finished in .005925 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo>

DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

betwnstr

BETWNSTR Tests [.002 sec]

Finished in .005925 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo>

October 14, 2021Increase your programming confidence by using Unit Tests178

DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

betwnstr

BETWNSTR Tests [.002 sec]

Finished in .005925 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo> exec ut.run('demo.test_betwnstr')

DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

betwnstr

BETWNSTR Tests [.002 sec]

Finished in .005925 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo> exec ut.run('demo.test_betwnstr')

betwnstr

BETWNSTR Tests [.003 sec]

Finished in .006984 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo>

Annotation

October 14, 2021Increase your programming confidence by using Unit Tests179

Annotation Level Description

--%beforeall Procedure
Denotes that the annotated procedure should be
executed once before all elements of the suite.

--%beforeall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed once before all elements of the suite.

--%afterall Procedure
Denotes that the annotated procedure should be
executed once after all elements of the suite.

--%afterall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed once after all elements of the suite.

Annotation

October 14, 2021Increase your programming confidence by using Unit Tests180

Annotation Level Description

--%beforeall Procedure
Denotes that the annotated procedure should be
executed once before all elements of the suite.

--%beforeall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed once before all elements of the suite.

--%afterall Procedure
Denotes that the annotated procedure should be
executed once after all elements of the suite.

--%afterall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed once after all elements of the suite.

--%beforeeach Procedure
Denotes that the annotated procedure should be
executed before each %test procedure in the suite.

--%beforeeach([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed before each %test procedure in the
suite.

--%aftereach Procedure
Denotes that the annotated procedure should be
executed after each %test procedure in the suite.

--%aftereach([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed after each %test procedure in the
suite.

Annotation

October 14, 2021Increase your programming confidence by using Unit Tests181

Annotation Level Description

--%beforeall Procedure
Denotes that the annotated procedure should be
executed once before all elements of the suite.

--%beforeall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed once before all elements of the suite.

--%afterall Procedure
Denotes that the annotated procedure should be
executed once after all elements of the suite.

--%afterall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed once after all elements of the suite.

--%beforeeach Procedure
Denotes that the annotated procedure should be
executed before each %test procedure in the suite.

--%beforeeach([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed before each %test procedure in the
suite.

--%aftereach Procedure
Denotes that the annotated procedure should be
executed after each %test procedure in the suite.

--%aftereach([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should
be executed after each %test procedure in the
suite.

--%beforetest([[<owner>.]<package>.]<procedure>[,...]) Procedure
Denotes that mentioned procedure(s) should be
executed before the annotated %testprocedure.

--%aftertest([[<owner>.]<package>.]<procedure>[,...]) Procedure
Denotes that mentioned procedure(s) should be
executed after the annotated %test procedure.

Some Key Features

 native comparison of complex types (objects/collections/cursors)

 tests identified and configured by annotations

 Build-in coverage reporting

 Integration with SonarQube, Coveralls, Jenkins and Teamcity with reporters

 plugin architecture for reporters and matchers

 multi-reporting from test-run from command line

October 14, 2021Increase your programming confidence by using Unit Tests182

Code coverage

October 14, 2021Increase your programming confidence by using Unit Tests183

Integration with Jenkins with reporters

October 14, 2021Increase your programming confidence by using Unit Tests184

October 14, 2021Increase your programming confidence by using Unit Tests185

October 14, 2021Increase your programming confidence by using Unit Tests186

Now what?

October 14, 2021Increase your programming confidence by using Unit Tests187

Resources

October 14, 2021Increase your programming confidence by using Unit Tests188

 SQL Developer

https://www.oracle.com/database/technologies/appdev/sql-developer.html

https://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html

 utPLSQL

http://utplsql.org/

 utPLSQL v3 Cheat Sheet

https://www.cheatography.com/jgebal/cheat-sheets/utplsql-v3/

oracle.com/gbtour

New Free Tier Always Free

Oracle Cloud Infrastructure

Services you can use for unlimited time

30-Day Free Trial
Free credits you can use for more services

+

