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I don’t write 
unittests because 
it takes too much 

time to write 
them.
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Then, how do 
you test your 
code?
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I’ll start the 
application, login, 

navigate to the right 
screen

and then perform the 
necessary actions?
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Gee, how long 
does that take?
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As a developer

I need a function

That returns the characters from a given string between a given 

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive 

cde
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As a developer

I need a function

That returns the characters from a given string between a given 

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive 

cde

function
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As a developer

I need a function

That returns the characters from a given string between a given 

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive 

cde

function betwnstr
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As a developer

I need a function

That returns the characters from a given string between a given 

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive 

cde

function betwnstr(

) return varchar2
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As a developer

I need a function

That returns the characters from a given string between a given 

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive 

cde

function betwnstr(string_in in varchar2
,start_in in integer
,end_in in integer) return varchar2
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As a developer

I need a function

That returns the characters from a given string between a given 

starting character and an ending character.

Example: Send in abcdefgh and the numbers 3 and 5 and receive 

cde

SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4  begin
5    return substr(                                          );
6  end betwnstr;
7  /
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4  begin
5    return substr(                                          );
6  end betwnstr;
7  /
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4  begin
5    return substr(string_in, start_in, end_in );
6  end betwnstr;
7  /

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 5)) cdefg

October 14, 2021Increase your programming confidence by using Unit Tests21



SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4  begin
5    return substr(string_in, start_in, end_in - start_in );
6  end betwnstr;
7  /

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 5)) cd
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4  begin
5    return substr(string_in, start_in, end_in - start_in - 1);
6  end betwnstr;
7  /

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 5)) c
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4  begin
5    return substr(string_in, start_in, end_in - start_in + 1);
6  end betwnstr;
7  /

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 5))

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 0, 2))

SQL> exec dbms_output.put_line(betwnstr('abcdefgh', 3, 100))

cde

abc

cdefgh
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cde
abc

cdefgh

fgh

PL/SQL procedure successfully completed.

SQL> begin                                                 
2    dbms_output.put_line(betwnstr('abcdefgh', 3, 5));   
3    dbms_output.put_line(betwnstr('abcdefgh',0,2));     
4    dbms_output.put_line(betwnstr('abcdefgh',null,5));  
5    dbms_output.put_line(betwnstr('abcdefgh',3,null));  
6    dbms_output.put_line(betwnstr('abcdefgh',3,100));   
7    dbms_output.put_line(betwnstr('abcdefgh',-3,-5));   
8    dbms_output.put_line(betwnstr('abcdefgh',-3,0));    
9  end;                                                  
10  / 
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4    l_start integer := start_in;
5  begin
6    -- 0 should be start of string so change it to 1
7    if l_start = 0 then
8      l_start := 1;
9    end if;
10
11    return substr(string_in, l_start, end_in - l_start + 1);
12  end betwnstr;
13  /
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cde
ab

cdefgh

fgh

PL/SQL procedure successfully completed.

SQL> begin                                                 
2    dbms_output.put_line(betwnstr('abcdefgh', 3, 5));   
3    dbms_output.put_line(betwnstr('abcdefgh',0,2));     
4    dbms_output.put_line(betwnstr('abcdefgh',null,5));  
5    dbms_output.put_line(betwnstr('abcdefgh',3,null));  
6    dbms_output.put_line(betwnstr('abcdefgh',3,100));   
7    dbms_output.put_line(betwnstr('abcdefgh',-3,-5));   
8    dbms_output.put_line(betwnstr('abcdefgh',-3,0));    
9  end;                                                  
10  / 
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4    l_start integer := start_in;
5  begin
6    -- 0 should be start of string so change it to 1
7    if l_start = 0 then
8      l_start := 1;
9    end if;
10    if l_start is null then
11      l_start := 1;
12    end if;
13    return substr(string_in, l_start, end_in - l_start + 1);
14  end betwnstr;
15  /
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SQL> begin                                                 
2    dbms_output.put_line(betwnstr('abcdefgh', 3, 5));   
3    dbms_output.put_line(betwnstr('abcdefgh',0,2));     
4    dbms_output.put_line(betwnstr('abcdefgh',null,5));  
5    dbms_output.put_line(betwnstr('abcdefgh',3,null));  
6    dbms_output.put_line(betwnstr('abcdefgh',3,100));   
7    dbms_output.put_line(betwnstr('abcdefgh',-3,-5));   
8    dbms_output.put_line(betwnstr('abcdefgh',-3,0));    
9  end;                                                  
10  / 

cde
ab
abcde

cdefgh

fgh

PL/SQL procedure successfully completed.
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Unit Testing

Setup
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Unit Testing

 Build tables

 Enter records

 Run Code

Setup

SQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';

12  end;
13  /
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Unit Testing

Setup

RunSQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';

12  end;
13  /

SQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';

12  end;
13  /

October 14, 2021Increase your programming confidence by using Unit Tests34



SQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';

12  end;
13  /

Unit Testing

 Run the actual code

 Record the outcome

Setup

Run

SQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';
6    test_this := betwnstr('abcdefgh',3,5);

12  end;
13  /
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Unit Testing

Setup

Validate

Run

SQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';
6    test_this := betwnstr('abcdefgh',3,5);

12  end;
13  /

SQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';
6    test_this := betwnstr('abcdefgh',3,5);

12  end;
13  /
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Unit Testing

 Do the validation of the results

Setup

Validate

Run

SQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';
6    test_this := betwnstr('abcdefgh',3,5);

12  end;
13  /

SQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';
6    test_this := betwnstr('abcdefgh',3,5);
7    if test_this = against_this then
8      dbms_output.put_line('OK');
9    else
10      dbms_output.put_line('NOT OK');
11    end if;
12  end;
13  /
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Unit Testing

Setup

Validate

Run

TeardownSQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';
6    test_this := betwnstr('abcdefgh',3,5);
7    if test_this = against_this then
8      dbms_output.put_line('OK');
9    else
10      dbms_output.put_line('NOT OK');
11    end if;
12  end;
13  /

SQL> declare
2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';
6    test_this := betwnstr('abcdefgh',3,5);
7    if test_this = against_this then
8      dbms_output.put_line('OK');
9    else
10      dbms_output.put_line('NOT OK');
11    end if;
12  end;
13  /
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Unit Testing

 Teardown everything you setup

Setup

Validate

Run

Teardown
SQL> declare

2    test_this varchar2(100);
3    against_this varchar2(100);
4  begin
5    against_this := 'cde';
6    test_this := betwnstr('abcdefgh',3,5);
7    if test_this = against_this then
8      dbms_output.put_line('OK');
9    else
10      dbms_output.put_line('NOT OK');
11    end if;
12  end;
13  /
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.
>  FFFFFFF   AA     III  L      U     U RRRRR   EEEEEEE
>  F        A  A     I   L      U     U R    R  E

>  F       A    A    I   L      U     U R     R E
>  F      A      A   I   L      U     U R     R E
>  FFFF   A      A   I   L      U     U RRRRRR  EEEE
>  F      AAAAAAAA   I   L      U     U R   R   E
>  F      A      A   I   L      U     U R    R  E
>  F      A      A   I   L       U   U  R     R E
>  F      A      A  III  LLLLLLL  UUU   R     R EEEEEEE
.
FAILURE: ".ut_betwnstr"
.
> Individual Test Case Results:
>
FAILURE - ut_betwnstr.UT_BETWNSTR: EQ "Typical valid usage" 
Expected "cd" and
got "cde"

>
SUCCESS - ut_betwnstr.UT_BETWNSTR: EQ "Zero start" Expected 
"ab" and got "ab"

October 14, 2021Increase your programming confidence by using Unit Tests55



.
>  FFFFFFF   AA     III  L      U     U RRRRR   EEEEEEE
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>  FFFF   A      A   I   L      U     U RRRRRR  EEEE
>  F      AAAAAAAA   I   L      U     U R   R   E
>  F      A      A   I   L      U     U R    R  E
>  F      A      A   I   L       U   U  R     R E
>  F      A      A  III  LLLLLLL  UUU   R     R EEEEEEE
.
FAILURE: ".ut_betwnstr"
.
> Individual Test Case Results:
>
FAILURE - ut_betwnstr.UT_BETWNSTR: EQ "Typical valid usage" 
Expected "cd" and
got "cde"

>
SUCCESS - ut_betwnstr.UT_BETWNSTR: EQ "Zero start" Expected 
"ab" and got "ab"
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.
>    SSSS   U     U   CCC     CCC   EEEEEEE   SSSS     SSSS
>   S    S  U     U  C   C   C   C  E        S    S   S    S

>  S        U     U C     C C     C E       S        S
>   S       U     U C       C       E        S        S
>    SSSS   U     U C       C       EEEE      SSSS     SSSS
>        S  U     U C       C       E             S        S
>         S U     U C     C C     C E              S        S
>   S    S   U   U   C   C   C   C  E        S    S   S    S
>    SSSS     UUU     CCC     CCC   EEEEEEE   SSSS     SSSS
.
SUCCESS: ".ut_betwnstr"
.
> Individual Test Case Results:
>
SUCCESS - ut_betwnstr.UT_BETWNSTR: EQ "Typical valid usage" 
Expected "cde" and
got "cde"

>
SUCCESS - ut_betwnstr.UT_BETWNSTR: EQ "Zero start" Expected 
"ab" and got "ab"
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4  begin
5    return substr(string_in, start_in, end_in - start_in + 1);
6  end betwnstr;
7  /
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4    l_start integer := start_in;
5  begin
6    -- 0 should be start of string so change it to 1
7    if l_start = 0 then
8      l_start := 1;
9    end if;
10
11    return substr(string_in, l_start, end_in - l_start + 1);
12  end betwnstr;
13  /
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4    l_start integer := start_in;
5  begin
6    -- 0 should be start of string so change it to 1
7    if l_start = 0 then
8      l_start := 1;
9    end if;
10
11    return substr(string_in, l_start, end_in - l_start + 1);
12  end betwnstr;
13  /
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4    l_start integer := start_in;
5  begin
6    -- 0 should be start of string so change it to 1
7    if l_start = 0 then
8      l_start := 1;
9    end if;
10    if l_start is null then
11      l_start := 1;
12    end if;
13    return substr(string_in, l_start, end_in - l_start + 1);
14  end betwnstr;
15  /
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4    l_start integer := start_in;
5  begin
6    -- 0 should be start of string so change it to 1
7    if l_start = 0 then
8      l_start := 1;
9    end if;
10    if l_start is null then
11      l_start := 1;
12    end if;
13    return substr(string_in, l_start, end_in - l_start + 1);
14  end betwnstr;
15  /
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SQL> create or replace function betwnstr(string_in in varchar2
2                                     ,start_in in integer
3                                     ,end_in in integer) return varchar2 is
4    l_string varchar2(32767) := string_in;
5    l_start integer := start_in;
6    l_end integer := end_in;
7    l_returnvalue varchar2(32767);
8  begin
9    if (l_start < 1)
10       or (l_start is null) then
11      l_start := 1;
12    end if;
13
14    if (l_end is null) then
15      l_end := length(l_string);
16    end if;
17
18    l_returnvalue := substr(l_string, l_start, (l_end - l_start) + 1);
19
20    return l_returnvalue;
21  end betwnstr;
22  /
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> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli

Available features:

cart: Database Cart Batch Tasks

dba: Basic Batch DBA Tasks

format: Utility Import Task

migration: Database Migration Tasks

reports: Basic Batch Reporting Tasks

unittest: Unit Testing Batch Tasks

utility: Utility Import Task
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> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest

unittest ?

unittest -run ?

unittest -exp ?

unittest -imp ?

Command Completed.
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> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run ?> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run ?

unittest -run -test (-id <id>|-name <name>} -repo <connection name>

-db <connection name> {-return <return id>} {-log <0,1,2,3>}

unittest -run -suite (-id <id>|-name <name>} -repo <connection name>

-db <connection name> {-return <return id>} {-log <0,1,2,3>}
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> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo"

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo"

Command Completed.
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> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3

a23124be-4f86-4d67-9219-edaabc8cc3b3

UT_SUCCESS

null

Command Completed.
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> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3

37212a19-2962-43bc-92fd-103421edf979

UT_ERROR

BETWNSTR failed: Test Implementation 7 failed: Expected: [null], Received: [fgh]

Command Completed.
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> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3 -return 1

> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR“

-repo "testdemo @ demo" -db "testdemo @ demo" -log 3 -return 1

1

UT_SUCCESS

null

Command Completed.
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> sqlplus testdemo/testdemo@demo

SQL*Plus: Release 12.1.0.1.0 Production on Sun Jan 22 07:56:33 2017

Copyright (c) 1982, 2013, Oracle.  All rights reserved.

Last Successful login time: Sun Jan 22 2017 07:43:31 +01:00

Connected to:

Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production

With the Partitioning, OLAP, Advanced Analytics and Real Application Testing options

TESTDEMO@demo> create sequence unittest_seq start with 2 nocache

2  /

Sequence created.

TESTDEMO@demo>
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@echo off

ECHO Retrieve the next UnitTestID

for /f %%i in ('sqlplus -s testdemo/testdemo@demo @getSequenceNextVal.sql') do @set 

UnitTestID=%%i

ECHO Run the unittest using this ID

C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR" -

repo "testdemo @ demo" -db "testdemo @ demo" -log 3 -return %UnitTestID%
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@echo off

ECHO Retrieve the next UnitTestID

for /f %%i in ('sqlplus -s testdemo/testdemo@demo @getSequenceNextVal.sql') do @set 

UnitTestID=%%i

ECHO Run the unittest using this ID

C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -test -name "BETWNSTR" -

repo "testdemo @ demo" -db "testdemo @ demo" -log 3 -return %UnitTestID%

> test

Retrieve the next UnitTestID

Run the unittest using this ID

2

UT_SUCCESS

null

Command Completed.
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> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run ?> C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run ?

unittest -run -test (-id <id>|-name <name>} -repo <connection name>

-db <connection name> {-return <return id>} {-log <0,1,2,3>}

unittest -run -suite (-id <id>|-name <name>} -repo <connection name>

-db <connection name> {-return <return id>} {-log <0,1,2,3>}
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@echo off

ECHO Retrieve the next UnitTestID

for /f %%i in ('sqlplus -s testdemo/testdemo@demo @getSequenceNextVal.sql') do @set 

UnitTestID=%%i

ECHO Run the testsuite using this ID

C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -suite -name "Suite1" -repo 

"testdemo @ demo" -db "testdemo @ demo" -log 3 -return %UnitTestID%

ECHO Create the XML file with the results

sqlplus -s -l testdemo/testdemo@demo @ut##dumpxml.sql %UnitTestID%
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@echo off

ECHO Retrieve the next UnitTestID

for /f %%i in ('sqlplus -s testdemo/testdemo@demo @getSequenceNextVal.sql') do @set 

UnitTestID=%%i

ECHO Run the testsuite using this ID

C:\oracle\sqldeveloper\sqldeveloper\bin\sdcli unittest -run -suite -name "Suite1" -repo 

"testdemo @ demo" -db "testdemo @ demo" -log 3 -return %UnitTestID%

ECHO Create the XML file with the results

sqlplus -s -l testdemo/testdemo@demo @ut##dumpxml.sql %UnitTestID%

> suite

Retrieve the next UnitTestID

Run the testsuite using this ID

7

UT_ERROR

Suite1 failed: FACT failed: Test Implementation 7 failed: Expected: [839], Received: 

[5040]

Command Completed.

Create the XML file with the results

old   3:   c_suite constant varchar2(40) := '&1';
October 14, 2021Increase your programming confidence by using Unit Tests159



October 14, 2021Increase your programming confidence by using Unit Tests160



October 14, 2021Increase your programming confidence by using Unit Tests161



October 14, 2021Increase your programming confidence by using Unit Tests162



October 14, 2021Increase your programming confidence by using Unit Tests163



utPL/SQL v3

 Completely new version

 Implementation is different from utPL/SQL

 Test converter available

 Uses annotation

□ Still have to write your own code, but less
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create or replace package test_betwnstr is
-- %suite (betwnstr)
-- Purpose : Unittesting betwnstr with utPL/SQL 3

-- %test(BETWNSTR Tests)
procedure test_betwnstr;

end test_betwnstr;
/
create or replace package body test_betwnstr is

c_teststring constant varchar2(8) := 'abcdefgh';
procedure test_betwnstr is
begin
ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => 5))

.to_equal('cde');
ut.expect(betwnstr(string_in => c_teststring, start_in => 0, end_in => 2))

.to_equal('ab');
ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => 9999))

.to_equal('cdefgh');
ut.expect(betwnstr(string_in => c_teststring, start_in => null, end_in => 5))

.to_equal('abcde');
ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => null))

.to_equal('cdefgh');
ut.expect(betwnstr(string_in => c_teststring, start_in => -3, end_in => -5))

.to_be_null;
ut.expect(betwnstr(string_in => c_teststring, start_in => -3, end_in => 0))

.to_be_null;
end;

end test_betwnstr;
/
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Expectation

 More natural language
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ut.expect(betwnstr(string_in => 'abcdefgh'

,start_in => 3

,end_in => 5)

).to_equal('cde');

utAssert.eq ('Typical valid usage'

,betwnstr(string_in => 'abcdefgh'

,start_in => 3

,end_in => 5)

,'cde');



Expectation

to_be_null
to_be_not_null
to_be_true
to_be_false
to_equal
to_be_like
to_match
to_be_between
to_be_greater_or_equal
to_be_greater_than
to_be_less_or_equal
to_be_less_than

not_to_be_null
not_to_be_not_null
not_to_be_true
not_to_be_false
not_to_equal
not_to_be_like
not_to_match
not_to_be_between
not_to_be_greater_or_equal
not_to_be_greater_than
not_to_be_less_or_equal
not_to_be_less_than
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Expectation
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be_not_null X X X X X X X X X X X X X X

be_null X X X X X X X X X X X X X X

be_false X

be_true X

be_greater_than X X X X X X X

be_greater_or_equal X X X X X X X

be_less_or_equal X X X X X X X

be_less_than X X X X X X X

be_between X X X X X X X X

equal X X X X X X X X X X X X X X

match X X

be_like X X

be_empty X X X X

have_count X X



Annotation
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create or replace package test_betwnstr is

end test_betwnstr;



Annotation
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create or replace package test_betwnstr is
-- %suite (betwnstr)

end test_betwnstr;



Annotation
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create or replace package test_betwnstr is
-- %suite (betwnstr)

procedure test_betwnstr;
end test_betwnstr;



Annotation
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create or replace package test_betwnstr is
-- %suite (betwnstr)
-- Purpose : Unittesting betwnstr with utPL/SQL 3

-- %test(BETWNSTR Tests)
procedure test_betwnstr;

end test_betwnstr;



create or replace package body test_betwnstr is
c_teststring constant varchar2(8) := 'abcdefgh';
procedure test_betwnstr is
begin

ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => 5))
.to_equal('cde');

ut.expect(betwnstr(string_in => c_teststring, start_in => 0, end_in => 2))
.to_equal('ab');

ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => 9999))
.to_equal('cdefgh');

ut.expect(betwnstr(string_in => c_teststring, start_in => null, end_in => 5))
.to_equal('abcde');

ut.expect(betwnstr(string_in => c_teststring, start_in => 3, end_in => null))
.to_equal('cdefgh');

ut.expect(betwnstr(string_in => c_teststring, start_in => -3, end_in => -5))
.to_be_null;

ut.expect(betwnstr(string_in => c_teststring, start_in => -3, end_in => 0))
.to_be_null;

end;
end test_betwnstr;
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DEMO@demo>
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DEMO@demo>
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DEMO@demo> set serveroutput on size unlimitedDEMO@demo> set serveroutput on size unlimited

DEMO@demo>



DEMO@demo> set serveroutput on size unlimited

DEMO@demo>
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DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

betwnstr

BETWNSTR Tests [.002 sec]

Finished in .005925 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo>



DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

betwnstr

BETWNSTR Tests [.002 sec]

Finished in .005925 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo>
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DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

betwnstr

BETWNSTR Tests [.002 sec]

Finished in .005925 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo> exec ut.run('demo.test_betwnstr')

DEMO@demo> set serveroutput on size unlimited

DEMO@demo> exec ut.run

betwnstr

BETWNSTR Tests [.002 sec]

Finished in .005925 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo> exec ut.run('demo.test_betwnstr')

betwnstr

BETWNSTR Tests [.003 sec]

Finished in .006984 seconds

1 tests, 0 failed, 0 errored, 0 disabled, 0 warning(s)

PL/SQL procedure successfully completed.

DEMO@demo>



Annotation
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Annotation Level Description

--%beforeall Procedure
Denotes that the annotated procedure should be 
executed once before all elements of the suite.

--%beforeall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed once before all elements of the suite.

--%afterall Procedure
Denotes that the annotated procedure should be 
executed once after all elements of the suite.

--%afterall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed once after all elements of the suite.



Annotation
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Annotation Level Description

--%beforeall Procedure
Denotes that the annotated procedure should be 
executed once before all elements of the suite.

--%beforeall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed once before all elements of the suite.

--%afterall Procedure
Denotes that the annotated procedure should be 
executed once after all elements of the suite.

--%afterall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed once after all elements of the suite.

--%beforeeach Procedure
Denotes that the annotated procedure should be 
executed before each %test procedure in the suite.

--%beforeeach([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed before each %test procedure in the 
suite.

--%aftereach Procedure
Denotes that the annotated procedure should be 
executed after each %test procedure in the suite.

--%aftereach([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed after each %test procedure in the 
suite.



Annotation
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Annotation Level Description

--%beforeall Procedure
Denotes that the annotated procedure should be 
executed once before all elements of the suite.

--%beforeall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed once before all elements of the suite.

--%afterall Procedure
Denotes that the annotated procedure should be 
executed once after all elements of the suite.

--%afterall([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed once after all elements of the suite.

--%beforeeach Procedure
Denotes that the annotated procedure should be 
executed before each %test procedure in the suite.

--%beforeeach([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed before each %test procedure in the 
suite.

--%aftereach Procedure
Denotes that the annotated procedure should be 
executed after each %test procedure in the suite.

--%aftereach([[<owner>.]<package>.]<procedure>[,...]) Package
Denotes that the mentioned procedure(s) should 
be executed after each %test procedure in the 
suite.

--%beforetest([[<owner>.]<package>.]<procedure>[,...]) Procedure
Denotes that mentioned procedure(s) should be 
executed before the annotated %testprocedure.

--%aftertest([[<owner>.]<package>.]<procedure>[,...]) Procedure
Denotes that mentioned procedure(s) should be 
executed after the annotated %test procedure.



Some Key Features

 native comparison of complex types (objects/collections/cursors)

 tests identified and configured by annotations

 Build-in coverage reporting

 Integration with SonarQube, Coveralls, Jenkins and Teamcity with reporters

 plugin architecture for reporters and matchers

 multi-reporting from test-run from command line
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Code coverage
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Integration with Jenkins with reporters
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Now what?
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Resources
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 SQL Developer

https://www.oracle.com/database/technologies/appdev/sql-developer.html

https://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html

 utPLSQL

http://utplsql.org/

 utPLSQL v3 Cheat Sheet

https://www.cheatography.com/jgebal/cheat-sheets/utplsql-v3/
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